Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.000 IF 2.000
  • IF 5-year<br/> value: 2.000 IF 5-year
    2.000
  • CiteScore<br/> value: 1.84 CiteScore
    1.84
  • SNIP value: 0.628 SNIP 0.628
  • SJR value: indexed SJR
    indexed
  • IPP value: 1.689 IPP 1.689
  • h5-index value: 6 h5-index 6
Earth Surf. Dynam., 4, 407-423, 2016
http://www.earth-surf-dynam.net/4/407/2016/
doi:10.5194/esurf-4-407-2016
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
20 May 2016
Modeling long-term, large-scale sediment storage using a simple sediment budget approach
Victoria Naipal1, Christian Reick1, Kristof Van Oost2, Thomas Hoffmann3, and Julia Pongratz1 1Department of Land in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
2Université catholique de Louvain, TECLIM – Georges Lemaître Centre for Earth and Climate Research, Louvain-la-Neuve, Belgium
3Department of Geography, University of Bonn, Bonn, Germany
Abstract. Currently, the anthropogenic perturbation of the biogeochemical cycles remains unquantified due to the poor representation of lateral fluxes of carbon and nutrients in Earth system models (ESMs). This lateral transport of carbon and nutrients between terrestrial ecosystems is strongly affected by accelerated soil erosion rates. However, the quantification of global soil erosion by rainfall and runoff, and the resulting redistribution is missing. This study aims at developing new tools and methods to estimate global soil erosion and redistribution by presenting and evaluating a new large-scale coarse-resolution sediment budget model that is compatible with ESMs. This model can simulate spatial patterns and long-term trends of soil redistribution in floodplains and on hillslopes, resulting from external forces such as climate and land use change. We applied the model to the Rhine catchment using climate and land cover data from the Max Planck Institute Earth System Model (MPI-ESM) for the last millennium (here AD 850–2005). Validation is done using observed Holocene sediment storage data and observed scaling between sediment storage and catchment area. We find that the model reproduces the spatial distribution of floodplain sediment storage and the scaling behavior for floodplains and hillslopes as found in observations. After analyzing the dependence of the scaling behavior on the main parameters of the model, we argue that the scaling is an emergent feature of the model and mainly dependent on the underlying topography. Furthermore, we find that land use change is the main contributor to the change in sediment storage in the Rhine catchment during the last millennium. Land use change also explains most of the temporal variability in sediment storage in floodplains and on hillslopes.

Citation: Naipal, V., Reick, C., Van Oost, K., Hoffmann, T., and Pongratz, J.: Modeling long-term, large-scale sediment storage using a simple sediment budget approach, Earth Surf. Dynam., 4, 407-423, doi:10.5194/esurf-4-407-2016, 2016.
Publications Copernicus
Download
Short summary
We present a new large-scale coarse-resolution sediment budget model that is compatible with Earth system models and simulates sediment dynamics in floodplains and on hillslopes. We applied this model on the Rhine catchment for the last millennium, and found that the model reproduces the spatial distribution of sediment storage and the scaling relationships as found in observations. We also identified that land use change explains most of the temporal variability in sediment storage.
We present a new large-scale coarse-resolution sediment budget model that is compatible with...
Share