Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.000 IF 2.000
  • IF 5-year<br/> value: 2.000 IF 5-year
    2.000
  • CiteScore<br/> value: 1.84 CiteScore
    1.84
  • SNIP value: 0.628 SNIP 0.628
  • SJR value: indexed SJR
    indexed
  • IPP value: 1.689 IPP 1.689
  • h5-index value: 6 h5-index 6
Earth Surf. Dynam., 4, 705-719, 2016
http://www.earth-surf-dynam.net/4/705/2016/
doi:10.5194/esurf-4-705-2016
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
02 Sep 2016
Reduced fine sediment flux and channel change in response to the managed diversion of an upland river channel
Matthew Thomas Perks1 and Jeff Warburton2 1Department of Geography, Politics and Sociology, Newcastle University, Newcastle, NE1 7RU, UK
2Department of Geography, Durham University, Durham, DH1 3LE, UK
Abstract. This paper describes the implementation of a novel mitigation approach and subsequent adaptive management, designed to reduce the transfer of fine sediment (< 2 mm) in Glaisdale Beck, a small, predominantly upland catchment in the UK. Hydro-meteorological and suspended sediment data sets are collected over a 2-year period spanning pre- and post-diversion periods in order to assess the impact of the channel reconfiguration scheme on the fluvial suspended sediment dynamics. Analysis of the river response demonstrates that the fluvial sediment system has become more restrictive with reduced fine sediment transfer. This is characterized by reductions in flow-weighted mean suspended sediment concentrations from 77.93 mg L−1 prior to mitigation, to 74.36 mg L−1 following the diversion. A Mann–Whitney U test found statistically significant differences (p < 0.001) between the pre- and post-monitoring median suspended sediment concentrations (SSCs). Whilst application of one-way analysis of covariance (ANCOVA) on the coefficients of sediment rating curves developed before and after the diversion found statistically significant differences (p < 0.001), with both Loga and b coefficients becoming smaller following the diversion. Non-parametric analysis indicates a reduction in residuals through time (p < 0.001), with the developed LOWESS model over-predicting sediment concentrations as the channel stabilizes. However, the channel is continuing to adjust to the reconfigured morphology, with evidence of a headward propagating knickpoint which has migrated 120 m at an exponentially decreasing rate over the last 7 years since diversion. The study demonstrates that channel reconfiguration can be effective in mitigating fine sediment flux in headwater streams but the full value of this may take many years to achieve whilst the fluvial system slowly readjusts.

Citation: Perks, M. T. and Warburton, J.: Reduced fine sediment flux and channel change in response to the managed diversion of an upland river channel, Earth Surf. Dynam., 4, 705-719, doi:10.5194/esurf-4-705-2016, 2016.
Publications Copernicus
Download
Short summary
We appraise the success of a novel mitigation approach and subsequent adaptive management, designed to reduce the transfer of fine sediment in a small upland catchment in the UK. Analysis of the river response demonstrates that the fluvial sediment system has become more restrictive with reduced fine sediment transfer. The study demonstrates that channel reconfiguration can be effective in mitigating fine sediment flux in upland streams but the full value of this may take many years to achieve.
We appraise the success of a novel mitigation approach and subsequent adaptive management,...
Share