Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.000 IF 2.000
  • IF 5-year<br/> value: 2.000 IF 5-year
    2.000
  • CiteScore<br/> value: 1.84 CiteScore
    1.84
  • SNIP value: 0.628 SNIP 0.628
  • SJR value: indexed SJR
    indexed
  • IPP value: 1.689 IPP 1.689
  • h5-index value: 6 h5-index 6
Earth Surf. Dynam., 5, 187-198, 2017
http://www.earth-surf-dynam.net/5/187/2017/
doi:10.5194/esurf-5-187-2017
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
22 Mar 2017
Laboratory rivers: Lacey's law, threshold theory, and channel stability
François Métivier, Eric Lajeunesse, and Olivier Devauchelle Institut de physique du globe de Paris – Sorbonne Paris Cité, Université Paris Diderot, CNRS, UMR7154, 1 rue Jussieu, 75238 Paris CEDEX 05, France
Abstract. More than a century of experiments have demonstrated that many features of natural rivers can be reproduced in the laboratory. Here, we revisit some of these experiments to cast their results into the framework of the threshold-channel theory developed by Glover and Florey (1951). In all the experiments we analyze, the typical size of the channel conforms to this theory, regardless of the river's planform (single-thread or braiding). In that respect, laboratory rivers behave exactly like their natural counterpart. Using this finding, we reinterpret experiments by Stebbings (1963). We suggest that sediment transport widens the channel until it reaches a limit width, beyond which it destabilizes into a braided river. If confirmed, this observation would explain the remarkable scarcity of single-thread channels in laboratory experiments.

Citation: Métivier, F., Lajeunesse, E., and Devauchelle, O.: Laboratory rivers: Lacey's law, threshold theory, and channel stability, Earth Surf. Dynam., 5, 187-198, doi:10.5194/esurf-5-187-2017, 2017.
Publications Copernicus
Download
Short summary
More than a century of experiments have demonstrated that many features of natural rivers can be reproduced in the laboratory. Here, we revisit some of these experiments to show that, regardless of the river's planform (single-thread or braiding), laboratory rivers behave like their natural counterparts. We further suggest that sediment transport could be responsible for the transition into a braided river, which could, in turn, explain the scarcity of laboratory single-thread channels.
More than a century of experiments have demonstrated that many features of natural rivers can be...
Share