Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.000 IF 2.000
  • IF 5-year<br/> value: 2.000 IF 5-year
    2.000
  • CiteScore<br/> value: 1.84 CiteScore
    1.84
  • SNIP value: 0.628 SNIP 0.628
  • SJR value: indexed SJR
    indexed
  • IPP value: 1.689 IPP 1.689
  • h5-index value: 6 h5-index 6
Earth Surf. Dynam., 5, 67-84, 2017
http://www.earth-surf-dynam.net/5/67/2017/
doi:10.5194/esurf-5-67-2017
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
26 Jan 2017
Controls on the distribution of cosmogenic 10Be across shore platforms
Martin D. Hurst1,2, Dylan H. Rood3, and Michael A. Ellis2 1School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
2British Geological Survey, Nicker Hill, Keyworth, Nottingham, NG12 5GG, UK
3Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
Abstract. Quantifying rates of erosion on cliffed coasts across a range of timescales is vital for understanding the drivers and processes of coastal change and for assessing risks posed by future cliff retreat. Historical records cover at best the last 150 years; cosmogenic isotopes, such as 10Be could allow us to look further into the past to assess coastal change on millennial timescales. Cosmogenic isotopes accumulate in situ near the Earth surface and have been used extensively to quantify erosion rates, burial dates and surface exposure ages in terrestrial landscapes over the last 3 decades. More recently, applications in rocky coast settings have quantified the timing of mass wasting events, determined long-term averaged rates of cliff retreat and revealed the exposure history of shore platforms. In this contribution, we develop and explore a numerical model for the accumulation of 10Be on eroding shore platforms. In a series of numerical experiments, we investigated the influence of topographic and water shielding, dynamic platform erosion processes, the presence and variation in beach cover, and heterogeneous distribution of erosion on the distribution of 10Be across shore platforms. Results demonstrate that, taking into account relative sea level change and tides, the concentration of 10Be is sensitive to rates of cliff retreat. Factors such as topographic shielding and beach cover act to reduce 10Be concentrations on the platform and may result in overestimation of cliff retreat rates if not accounted for. The shape of the distribution of 10Be across a shore platform can potentially reveal whether cliff retreat rates are declining or accelerating through time. Measurement of 10Be in shore platforms has great potential to allow us to quantify long-term rates of cliff retreat and platform erosion.

Citation: Hurst, M. D., Rood, D. H., and Ellis, M. A.: Controls on the distribution of cosmogenic 10Be across shore platforms, Earth Surf. Dynam., 5, 67-84, doi:10.5194/esurf-5-67-2017, 2017.
Publications Copernicus
Download
Short summary
Beryllium-10 is a rare isotope that only forms near to the Earth surface, allowing rock surfaces to be dated. In this paper we develop a numerical model for the evolution of shore platforms and associated 10Be concentrations to explore the potential for this method to reveal long-term rates of sea cliff retreat. Tides, sea level, cliffs and beaches all modify how rapidly 10Be accumulates on the shore platform, but there is great potential to measure rates of cliff retreat and platform erosion.
Beryllium-10 is a rare isotope that only forms near to the Earth surface, allowing rock surfaces...
Share