Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.176 IF 3.176
  • IF 5-year value: 3.108 IF 5-year
    3.108
  • CiteScore value: 3.06 CiteScore
    3.06
  • SNIP value: 0.978 SNIP 0.978
  • IPP value: 2.88 IPP 2.88
  • SJR value: 1.421 SJR 1.421
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 13 Scimago H
    index 13
  • h5-index value: 13 h5-index 13
Volume 3, issue 1
Earth Surf. Dynam., 3, 153-170, 2015
https://doi.org/10.5194/esurf-3-153-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Earth Surf. Dynam., 3, 153-170, 2015
https://doi.org/10.5194/esurf-3-153-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Mar 2015

Research article | 02 Mar 2015

Ice flow models and glacial erosion over multiple glacial–interglacial cycles

R. M. Headley1 and T. A. Ehlers2 R. M. Headley and T. A. Ehlers
  • 1Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI, USA
  • 2Department of Geosciences, University of Tübingen, Tübingen, Germany

Abstract. Mountain topography is constructed through a variety of interacting processes. Over glaciological timescales, even simple representations of glacial-flow physics can reproduce many of the distinctive features formed through glacial erosion. However, detailed comparisons at orogen time and length scales hold potential for quantifying the influence of glacial physics in landscape evolution models. We present a comparison using two different numerical models for glacial flow over single and multiple glaciations, within a modified version of the ICE-Cascade landscape evolution model. This model calculates not only glaciological processes but also hillslope and fluvial erosion and sediment transport, isostasy, and temporally and spatially variable orographic precipitation. We compare the predicted erosion patterns using a modified SIA as well as a nested, 3-D Stokes flow model calculated using COMSOL Multiphysics.

Both glacial-flow models predict different patterns in time-averaged erosion rates. However, these results are sensitive to the climate and the ice temperature. For warmer climates with more sliding, the higher-order model yields erosion rates that vary spatially and by almost an order of magnitude from those of the SIA model. As the erosion influences the basal topography and the ice deformation affects the ice thickness and extent, the higher-order glacial model can lead to variations in total ice-covered area that are greater than 30% those of the SIA model, again with larger differences for temperate ice. Over multiple glaciations and long timescales, these results suggest that higher-order glacial physics should be considered, particularly in temperate, mountainous settings.

Publications Copernicus
Download
Short summary
Within a landscape evolution model operating over geologic timescales, this work evaluates how different assumptions and levels of complexity for modeling glacier flow impact the pattern and amount of glacial erosion. Compared to those in colder climates, modeled glaciers in warmer and wetter climates are more sensitive to the choice of glacier flow model. Differences between landscapes evolved with different glacier flow models are intensified over multiple cycles.
Within a landscape evolution model operating over geologic timescales, this work evaluates how...
Citation
Share