Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.765 IF 3.765
  • IF 5-year value: 3.719 IF 5-year
    3.719
  • CiteScore value: 3.83 CiteScore
    3.83
  • SNIP value: 1.281 SNIP 1.281
  • IPP value: 3.61 IPP 3.61
  • SJR value: 1.527 SJR 1.527
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 17 Scimago H
    index 17
  • h5-index value: 18 h5-index 18
Volume 3, issue 4
Earth Surf. Dynam., 3, 447–462, 2015
https://doi.org/10.5194/esurf-3-447-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Earth Surf. Dynam., 3, 447–462, 2015
https://doi.org/10.5194/esurf-3-447-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Oct 2015

Research article | 06 Oct 2015

The periglacial engine of mountain erosion – Part 1: Rates of frost cracking and frost creep

J. L. Andersen1, D. L. Egholm1, M. F. Knudsen1, J. D. Jansen2, and S. B. Nielsen1 J. L. Andersen et al.
  • 1Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, 8000 Aarhus C, Denmark
  • 2Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany

Abstract. With accelerating climate cooling in the late Cenozoic, glacial and periglacial erosion became more widespread on the surface of the Earth. The resultant shift in erosion patterns significantly changed the large-scale morphology of many mountain ranges worldwide. Whereas the glacial fingerprint is easily distinguished by its characteristic fjords and U-shaped valleys, the periglacial fingerprint is more subtle but potentially prevails in some mid- to high-latitude landscapes. Previous models have advocated a frost-driven control on debris production at steep headwalls and glacial valley sides. Here we investigate the important role that periglacial processes also play in less steep parts of mountain landscapes. Understanding the influences of frost-driven processes in low-relief areas requires a focus on the consequences of an accreting soil mantle, which characterises such surfaces. We present a new model that quantifies two key physical processes: frost cracking and frost creep, as a function of both temperature and sediment thickness. Our results yield new insights into how climate and sediment transport properties combine to scale the intensity of periglacial processes. The thickness of the soil mantle strongly modulates the relation between climate and the intensity of mechanical weathering and sediment flux. Our results also point to an offset between the conditions that promote frost cracking and those that promote frost creep, indicating that a stable climate can provide optimal conditions for only one of those processes at a time. Finally, quantifying these relations also opens up the possibility of including periglacial processes in large-scale, long-term landscape evolution models, as demonstrated in a companion paper.

Publications Copernicus
Download
Short summary
An increasing number of studies demonstrates links between the intensity of periglacial processes and bedrock erosion in steep mountain landscapes. Here, we quantify the dependence of periglacial processes on temperature and sediment thickness. This allows us to model frost processes across the full range of settings encountered in mountain landscapes. We find that sediment mantle thickness strongly modulates the relation between climate and periglacial weathering and sediment transport.
An increasing number of studies demonstrates links between the intensity of periglacial...
Citation