Review article
30 May 2016
Review article | 30 May 2016
An introduction to learning algorithms and potential applications in geomorphometry and Earth surface dynamics
Andrew Valentine and Lara Kalnins
Related subject area
Earth's surface mass transport derived from GRACE, evaluated by GPS, ICESat, hydrological modeling and altimetry satellite orbits
Christian Gruber, Sergei Rudenko, Andreas Groh, Dimitrios Ampatzidis, and Elisa Fagiolini
Earth Surf. Dynam., 6, 1203–1218, https://doi.org/10.5194/esurf-6-1203-2018,https://doi.org/10.5194/esurf-6-1203-2018, 2018
Short summary
Bayesian inversion of a CRN depth profile to infer Quaternary erosion of the northwestern Campine Plateau (NE Belgium)
Eric Laloy, Koen Beerten, Veerle Vanacker, Marcus Christl, Bart Rogiers, and Laurent Wouters
Earth Surf. Dynam., 5, 331–345, https://doi.org/10.5194/esurf-5-331-2017,https://doi.org/10.5194/esurf-5-331-2017, 2017
Short summary
A new CT scan methodology to characterize a small aggregation gravel clast contained in a soft sediment matrix
Laurent Fouinat, Pierre Sabatier, Jérôme Poulenard, Jean-Louis Reyss, Xavier Montet, and Fabien Arnaud
Earth Surf. Dynam., 5, 199–209, https://doi.org/10.5194/esurf-5-199-2017,https://doi.org/10.5194/esurf-5-199-2017, 2017
Short summary
Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics
Daniel E. J. Hobley, Jordan M. Adams, Sai Siddhartha Nudurupati, Eric W. H. Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, and Gregory E. Tucker
Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017,https://doi.org/10.5194/esurf-5-21-2017, 2017
Short summary
Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains
E. Pohl, M. Knoche, R. Gloaguen, C. Andermann, and P. Krause
Earth Surf. Dynam., 3, 333–362, https://doi.org/10.5194/esurf-3-333-2015,https://doi.org/10.5194/esurf-3-333-2015, 2015
Short summary
Cited articles
Baeza, C. and Corominas, J.: Assessment of shallow landslide susceptibility by means of multivariate statistical techniques, Earth Surf. Proc. Land., 26, 1251–1263, 2001.
Bayes, T.: An essay towards solving a problem in the doctrine of chances, Philos. T. R. Soc. A, 53, 370–418, 1763.
Beechie, T. and Imaki, H.: Predicting natural channel patterns based on landscape and geomorphic controls in the Columbia River basin, USA, Water Resour. Res., 50, 39–57, 2014.
Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S., Marani, A., and Marani, M.: Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing, Remote Sens. Environ., 105, 54–67, 2006.
Bishop, C.: Neural Networks for Pattern Recognition, Oxford University Press, Oxford, UK, 1995.
Bishop, C.: Pattern Recognition and Machine Learning, Springer, New York, USA, 2006.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001.
Brenning, A.: Spatial prediction models for landslide hazards: review, comparison and evaluation, Nat. Hazards Earth Syst. Sci., 5, 853–862, https://doi.org/10.5194/nhess-5-853-2005, 2005.
Das, I., Stein, A., Kerle, N., and Dadhwal, V. K.: Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models, Geomorphology, 179, 116–125, 2012.
Dietterich, T.: Ensemble methods in machine learning, in: Multiple classifier systems, in: Lecture Notes in Computer Science, edited by: Kittler, J. and Roli, F., 1857, 1–15, Springer-Verlag, Berlin, Germany, 2000.
Ehsani, A. and Quiel, F.: Geomorphometric feature analysis using morphometric parameterization and artificial neural networks, Geomorphology, 99, 1–12, 2008.
Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett., 27, 861–874, 2006.
Friedel, M. J.: Modeling hydrologic and geomorphic hazards across post-fire landscapes using a self-organizing map approach, Environ. Modell. Soft., 26, 1660–1674, 2011.
Griffiths, G.: Stochastic Prediction in Geomorphology Using Bayesian Inference Models, Math. Geol., 14, 65–75, 1982.
Gutierrez, B. T., Plant, N. G., and Thieler, E. R.: A Bayesian network to predict coastal vulnerability to sea level rise, J. Geophys. Res.-Earth, 116, F02009, https://doi.org/10.1029/2010JF001891, 2011.
Hornik, K.: Approximation capabilities of multilayer feedforward networks, Neural Networks, 4, 251–257, 1991.
Jain, A.: Data clustering: 50 years beyond K-means, Pattern Recogn. Lett., 31, 651–666, 2010.
Jasiewicz, J. and Stepinski, T.: Geomorphons – a pattern recognition approach to classification and mapping of landforms, Geomorphology, 182, 147–156, 2013.
King, R., Rowland, J., Aubrey, W., Liakata, M., Markham, M., Soldatova, L., Whelan, K., Clare, A., Young, M., Sparkes, A., Oliver, S., and Pir, P.: The robot scientist Adam, Computer, 42, 46–54, 2009.
Kohonen, T.: The Self-Organizing Map, Proceedings of the IEEE, 78, 1464–1480, 1990.
Krasnopolsky, V. and Schiller, H.: Some neural network applications in environmental sciences. Part I: forward and inverse problems in geophysical remote measurements, Neural Networks, 16, 321–334, 2003.
Lee, S., Choi, J., and Min, K.: Landslide susceptibility analysis and verification using the Bayesian probability model, Environ. Geol., 43, 120–131, 2002.
Li, J., Heap, A., Potter, A., and Daniell, J.: Application of machine learning methods to spatial interpolation of environmental variables, Environ. Modell. Soft., 26, 1647–1659, 2011.
Lippmann, R.: Pattern classification using neural networks, IEEE Commun. Mag., 27, 47–50, 1989.
Lloyd, S.: Least squares quantization in PCM, IEEE T. Inform. Theory, 28, 129–137, 1982.
Mackay, D.: Information Theory, Inference and Learning Algorithms, Cambridge University Press, Cambridge, UK, 2003.
Marjanović, M., Kovačević, M., Bajat, B., and Voženílek, V.: Landslide susceptibility assessment using SVM machine learning algorithm, Eng. Geol., 123, 225–234, 2011.
Markou, M. and Singh, S.: Novelty detection: a review – part 2: neural network based approaches, Signal Process., 83, 2499–2521, 2003.
Marsh, I. and Brown, C.: Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV), Appl. Acoust., 70, 1269–1276, 2009.
Marsland, S.: Novelty detection in learning systems, Neural Computing Surveys, 3, 1–39, 2002.
Mas, J. and Flores, J.: The application of artificial neural networks to the analysis of remotely sensed data, Int. J. of Sens., 29, 617–664, 2008.
Matías, K., Ordóñez, C., Taboada, J., and Rivas, T.: Functional support vector machines and generalized linear models for glacier geomorphology analysis, Int. J. Comput. Math., 86, 275–285, 2009.
Miliaresis, G. and Kokkas, N.: Segmentation and object-based classification for the extraction of the building class from LIDAR DEMs, Comput. Geosci., 33, 1076–1087, 2007.
Mondini, A. C., Marchesini, I., Rossi, M., Chang, K.-T., Pasquariello, G., and Guzzetti, F.: Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing and topographic data, Geomorphology, 201, 135–147, 2013.
Muggleton, S.: Exceeding human limits, Nature, 440, 409–410, 2006.
Pearson, K.: On Lines and Planes of Closest Fit to Systems of Points in Space, Philos. Mag., 2, 559–572, 1901.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Peng, L., Niu, R., Huang, B., Wu, X., Zhao, Y., and Ye, R.: Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China, Geomorphology, 204, 287–301, 2014.
Quinlan, J.: Induction of Decision Trees, Mach. Learn., 1, 81–106, 1986.
Quinlan, J.: C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, CA, USA, 1993.
Sammon, J.: A Nonlinear Mapping for Data Structure Analysis, IEEE T. Comput., C-18, 401–409, 1969.
Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F., Rückstieß, T., and Schmidhuber, J.: PyBrain, J. Mach. Learn. Res., 11, 743–746, 2010.
Schmelter, M., Hooten, M., and Stevens, D.: Bayesian sediment transport model for unisize bed load, Water Resour. Res., 47, W11514, https://doi.org/10.1029/2011WR010754, 2011.
Sivia, D.: Data analysis: A Bayesian tutorial, Oxford University Press, Oxford, UK, 1996.
Tamene, L., Park, S., Dikau, R., and Vlek, P.: Analysis of factors determining sediment yield variability in the highlands of northern Ethiopia, Geomorphology, 76, 76–91, 2006.
Wu, X., Kumar, V., Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu, B., Yu, P., Zhou, Z.-H., Steinbach, M., Hand, D., and Steinberg, D.: Top 10 algorithms in data mining, Knowl. Inf. Syst., 14, 1–37, 2008.
Yao, X., Tham, L., and Dai, F.: Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China, Geomorphology, 101, 572–582, 2008.