Articles | Volume 5, issue 2
https://doi.org/10.5194/esurf-5-269-2017
https://doi.org/10.5194/esurf-5-269-2017
Research article
 | 
17 May 2017
Research article |  | 17 May 2017

Physical theory for near-bed turbulent particle suspension capacity

Joris T. Eggenhuisen, Matthieu J. B. Cartigny, and Jan de Leeuw

Related subject area

Physical: Landscape Evolution: modelling and field studies
Refining patterns of melt with forward stratigraphic models of stable Pleistocene coastlines
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023,https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Optimising global landscape evolution models with 10Be
Gregory A. Ruetenik, John D. Jansen, Pedro Val, and Lotta Ylä-Mella
Earth Surf. Dynam., 11, 865–880, https://doi.org/10.5194/esurf-11-865-2023,https://doi.org/10.5194/esurf-11-865-2023, 2023
Short summary
Self-organization of channels and hillslopes in models of fluvial landform evolution and its potential for solving scaling issues
Stefan Hergarten and Alexa Pietrek
Earth Surf. Dynam., 11, 741–755, https://doi.org/10.5194/esurf-11-741-2023,https://doi.org/10.5194/esurf-11-741-2023, 2023
Short summary
Stream laws in analog tectonic-landscape models
Riccardo Reitano, Romano Clementucci, Ethan M. Conrad, Fabio Corbi, Riccardo Lanari, Claudio Faccenna, and Chiara Bazzucchi
Earth Surf. Dynam., 11, 731–740, https://doi.org/10.5194/esurf-11-731-2023,https://doi.org/10.5194/esurf-11-731-2023, 2023
Short summary
A control volume finite-element model for predicting the morphology of cohesive-frictional debris flow deposits
Tzu-Yin Kasha Chen, Ying-Chen Wu, Chi-Yao Hung, Hervé Capart, and Vaughan R. Voller
Earth Surf. Dynam., 11, 325–342, https://doi.org/10.5194/esurf-11-325-2023,https://doi.org/10.5194/esurf-11-325-2023, 2023
Short summary

Cited articles

Adrian, R. J.: Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, 41301, https://doi.org/10.1063/1.2717527, 2007.
Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, P. Roy. Soc. A-Math. Phy., 225, 49–63, 1954.
Bagnold, R. A.: An approach to the sediment transport problem from general physics, US Department of the Interior, Washington, USA, 1966.
Basani, R., Janocko, M., Cartigny, M. J. B., Hansen, W. M., and Eggenhuisen, J. T.: MassFLOW-3D TM as a simulation tool for turbidity currents?: some preliminary results, IAS Speical Publ., 46, 587–608, https://doi.org/10.1002/9781118920435.ch20, 2014.
Bennett, S. J., Bridge, J. S., and Best, J. L.: Fluid and sediment dynamics of upper stage plane beds, J. Geophys. Res., 103, 1239–1274, 1998.
Download
Short summary
Suspension of particles in turbulent flows is one of the most widely occurring physical phenomena in nature, yet no theory predicts the sediment transport capacity of the wind, avalanches, pyroclastic flows, rivers, and estuarine or marine currents. We derive such a theory from universal turbulence characteristics and fluid and particle properties alone. It compares favourably with measurements and previous empiric formulations, making it the first process-based theory for particle suspension.