Journal metrics

Journal metrics

  • IF value: 3.176 IF 3.176
  • IF 5-year value: 3.108 IF 5-year 3.108
  • CiteScore value: 3.06 CiteScore 3.06
  • SNIP value: 0.978 SNIP 0.978
  • SJR value: 1.421 SJR 1.421
  • IPP value: 2.88 IPP 2.88
  • h5-index value: 13 h5-index 13
  • Scimago H index value: 13 Scimago H index 13
Volume 5, issue 2 | Copyright
Earth Surf. Dynam., 5, 269-281, 2017
https://doi.org/10.5194/esurf-5-269-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 May 2017

Research article | 17 May 2017

Physical theory for near-bed turbulent particle suspension capacity

Joris T. Eggenhuisen et al.
Related subject area
Physical: Landscape Evolution: modelling and field studies
A lattice grain model of hillslope evolution
Gregory E. Tucker, Scott W. McCoy, and Daniel E. J. Hobley
Earth Surf. Dynam., 6, 563-582, https://doi.org/10.5194/esurf-6-563-2018,https://doi.org/10.5194/esurf-6-563-2018, 2018
On the Holocene evolution of the Ayeyawady megadelta
Liviu Giosan, Thet Naing, Myo Min Tun, Peter D. Clift, Florin Filip, Stefan Constantinescu, Nitesh Khonde, Jerzy Blusztajn, Jan-Pieter Buylaert, Thomas Stevens, and Swe Thwin
Earth Surf. Dynam., 6, 451-466, https://doi.org/10.5194/esurf-6-451-2018,https://doi.org/10.5194/esurf-6-451-2018, 2018
Scaling and similarity of a stream-power incision and linear diffusion landscape evolution model
Nikos Theodoratos, Hansjörg Seybold, and James W. Kirchner
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-33,https://doi.org/10.5194/esurf-2018-33, 2018
Revised manuscript accepted for ESurf
Morphological effects of vegetation on the fluvial-tidal transition in Holocene estuaries
Ivar Lokhorst, Lisanne Braat, Jasper R. F. W. Leuven, Anne W. Baar, Mijke van Oorschot, Sanja Selaković, and Maarten G. Kleinhans
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-29,https://doi.org/10.5194/esurf-2018-29, 2018
Revised manuscript accepted for ESurf
Numerical modelling of landscape and sediment flux response to precipitation rate change
John J. Armitage, Alexander C. Whittaker, Mustapha Zakari, and Benjamin Campforts
Earth Surf. Dynam., 6, 77-99, https://doi.org/10.5194/esurf-6-77-2018,https://doi.org/10.5194/esurf-6-77-2018, 2018
Cited articles
Adrian, R. J.: Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, 41301, https://doi.org/10.1063/1.2717527, 2007.
Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, P. Roy. Soc. A-Math. Phy., 225, 49–63, 1954.
Bagnold, R. A.: An approach to the sediment transport problem from general physics, US Department of the Interior, Washington, USA, 1966.
Basani, R., Janocko, M., Cartigny, M. J. B., Hansen, W. M., and Eggenhuisen, J. T.: MassFLOW-3D TM as a simulation tool for turbidity currents?: some preliminary results, IAS Speical Publ., 46, 587–608, https://doi.org/10.1002/9781118920435.ch20, 2014.
Bennett, S. J., Bridge, J. S., and Best, J. L.: Fluid and sediment dynamics of upper stage plane beds, J. Geophys. Res., 103, 1239–1274, 1998.
Publications Copernicus
Download
Short summary
Suspension of particles in turbulent flows is one of the most widely occurring physical phenomena in nature, yet no theory predicts the sediment transport capacity of the wind, avalanches, pyroclastic flows, rivers, and estuarine or marine currents. We derive such a theory from universal turbulence characteristics and fluid and particle properties alone. It compares favourably with measurements and previous empiric formulations, making it the first process-based theory for particle suspension.
Suspension of particles in turbulent flows is one of the most widely occurring physical...
Citation
Share