Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.649 IF 2.649
  • IF 5-year<br/> value: 2.688 IF 5-year
    2.688
  • CiteScore<br/> value: 2.64 CiteScore
    2.64
  • SNIP value: 0.628 SNIP 0.628
  • SJR value: indexed SJR
    indexed
  • IPP value: 1.689 IPP 1.689
  • h5-index value: 6 h5-index 6
Earth Surf. Dynam., 5, 293-310, 2017
https://doi.org/10.5194/esurf-5-293-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
24 May 2017
Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide
Ryan A. Kromer1,2, Antonio Abellán1,2,3, D. Jean Hutchinson2, Matt Lato2,5, Marie-Aurelie Chanut4, Laurent Dubois4, and Michel Jaboyedoff1 1Risk Analysis Group, University of Lausanne, Lausanne, Switzerland
2Geomechanics Group, Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada
3Scott Polar Research Institute, University of Cambridge, Cambridge, UK
4Groupe Risque Rocheux et Mouvements de Sols (RRMS), Cerema Centre-Est, France
5BGC Engineering, Ottawa, Canada
Abstract. We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.

Citation: Kromer, R. A., Abellán, A., Hutchinson, D. J., Lato, M., Chanut, M.-A., Dubois, L., and Jaboyedoff, M.: Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide, Earth Surf. Dynam., 5, 293-310, https://doi.org/10.5194/esurf-5-293-2017, 2017.
Publications Copernicus
Download
Short summary
We developed and tested an automated terrestrial laser scanning (ATLS) system with near-real-time change detection at the Séchilienne landslide. We monitored the landslide for a 6-week period collecting a point cloud every 30 min. We detected various slope processes including movement of scree material, pre-failure deformation of discrete rockfall events and deformation of the main landslide body. This system allows the study of slope processes a high level of temporal detail.
We developed and tested an automated terrestrial laser scanning (ATLS) system with...
Share