Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.649 IF 2.649
  • IF 5-year<br/> value: 2.688 IF 5-year
    2.688
  • CiteScore<br/> value: 2.64 CiteScore
    2.64
  • SNIP value: 0.628 SNIP 0.628
  • SJR value: indexed SJR
    indexed
  • IPP value: 1.689 IPP 1.689
  • h5-index value: 6 h5-index 6
Earth Surf. Dynam., 5, 511-527, 2017
https://doi.org/10.5194/esurf-5-511-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
08 Sep 2017
Distinct phases of eustatic and tectonic forcing for late Quaternary landscape evolution in southwest Crete, Greece
Vasiliki Mouslopoulou1, John Begg2, Alexander Fülling3, Daniel Moraetis4, Panagiotis Partsinevelos5, and Onno Oncken1 1GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany
2GNS Science, P.O. Box 30368, Lower Hutt, New Zealand
3Humboldt University of Berlin, 12489 Berlin, Germany
4Sultan Qaboos University, P.O. Box 36, PC 123, Muscat, Oman
5Technical University of Crete, 73100 Chania, Greece
Abstract. The extent to which climate, eustasy and tectonics interact to shape the late Quaternary landscape is poorly known. Alluvial fans often provide useful indexes that allow the decoding of information recorded on complex coastal landscapes, such as those of the eastern Mediterranean. In this paper we analyse and date (using infrared stimulated luminescence (IRSL) dating) a double alluvial fan system on southwest Crete, an island straddling the forearc of the Hellenic subduction margin, in order to constrain the timing and magnitude of its vertical deformation and discuss the factors contributing to its landscape evolution. The studied alluvial system is exceptional because each of its two juxtaposed fans records individual phases of alluvial and marine incision, thus providing unprecedented resolution in the formation and evolution of its landscape. Specifically, our analysis shows that the fan sequence at Domata developed during Marine Isotope Stage (MIS) 3 due to five distinct stages of marine transgressions and regressions and associated river incision, in response to sea-level fluctuations and tectonic uplift at averaged rates of  ∼ 2.2 mm yr−1. Interestingly, comparison of our results with published tectonic uplift rates from western Crete shows that uplift during 20–50 kyr BP was minimal (or even negative). Thus, most of the uplift recorded at Domata must have occurred in the last 20 kyr. This implies that eustasy and tectonism impacted the landscape at Domata over mainly distinct time intervals (e.g. sequentially and not synchronously), with eustasy forming and tectonism preserving the coastal landforms.

Citation: Mouslopoulou, V., Begg, J., Fülling, A., Moraetis, D., Partsinevelos, P., and Oncken, O.: Distinct phases of eustatic and tectonic forcing for late Quaternary landscape evolution in southwest Crete, Greece, Earth Surf. Dynam., 5, 511-527, https://doi.org/10.5194/esurf-5-511-2017, 2017.
Publications Copernicus
Download
Short summary
A double coastal alluvial fan system on Crete is used as a proxy for landscape evolution. Each juxtaposed fan records individual phases of alluvial and marine incision, providing unprecedented resolution in the formation and evolution of its landscape. The fan sequence developed during MIS 3 due to sea-level fluctuations but it was preserved due to tectonic uplift during the subsequent 20 000 years. Thus, eustasy and tectonics were important in fan evolution, but over distinct time intervals.
A double coastal alluvial fan system on Crete is used as a proxy for landscape evolution. Each...
Share