Impact of different fertilizers on carbonate weathering in a typical karst area, Southwest China: a field column experiment

Chao Song\textsuperscript{1,2}, Changli Liu\textsuperscript{1}, Guilin Han\textsuperscript{2}, and Congqiang Liu\textsuperscript{2}

\textsuperscript{1}The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050803, Hebei, China
\textsuperscript{2}School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China

Correspondence to: Chao Song (chao-song@qq.com)

Received: 17 September 2016 – Discussion started: 4 October 2016
Revised: 28 June 2017 – Accepted: 30 August 2017 – Published: 26 September 2017

Abstract. Carbonate weathering, as a significant vector for the movement of carbon both between and within ecosystems, is strongly influenced by agricultural fertilization, since the addition of fertilizers tends to change the chemical characteristics of soil such as the pH. Different fertilizers may exert a different impact on carbonate weathering, but these discrepancies are as yet not well-known. In this study, a field column experiment was conducted to explore the response of carbonate weathering to the addition of different fertilizers. We compared 11 different treatments, including a control treatment, using three replicates per treatment. Carbonate weathering was assessed by measuring the weight loss of limestone and dolostone tablets buried at the bottom of soil-filled columns. The results show that the addition of urea, NH\textsubscript{4}NO\textsubscript{3}, NH\textsubscript{4}HCO\textsubscript{3}, NH\textsubscript{4}Cl and (NH\textsubscript{4})\textsubscript{2}CO\textsubscript{3} distinctly increased carbonate weathering, which was attributed to the nitrification of NH\textsuperscript{+}\textsubscript{4}. The addition of Ca\textsubscript{3}(PO\textsubscript{4})\textsubscript{2}, Ca–Mg–P and K\textsubscript{2}CO\textsubscript{3} induced carbonate precipitation due to the common ion effect. The addition of (NH\textsubscript{4})\textsubscript{3}PO\textsubscript{4} and NaNO\textsubscript{3} had a relatively small impact on carbonate weathering in comparison to those five NH\textsubscript{4}-based fertilizers above. The results of NaNO\textsubscript{3} treatment raise a new question: the negligible impact of nitrate on carbonate weathering may result in an overestimation of the impact of N fertilizer on CO\textsubscript{2} consumption by carbonate weathering on the regional/global scale if the effects of NO\textsubscript{3} and NH\textsubscript{4} are not distinguished.

1 Introduction

Carbonate weathering plays a significant role in the consumption of atmospheric CO\textsubscript{2} (Kump et al., 2000; Liu et al., 2011, 2010). Riverine hydro-chemical composition, such as the ratio of HCO\textsubscript{3}\textsuperscript{−} to Ca\textsuperscript{2+} + Mg\textsuperscript{2+}, is usually employed as an indicator to estimate the CO\textsubscript{2} consumption by carbonate weathering on the regional/global scale (Hagedorn and Cartwright, 2009; Li et al., 2009). However, fluvial alkalinity may also be produced by other processes including the reaction between carbonates and protons derived from (i) the nitrification of N fertilizer (Barnes and Raymond, 2009; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Pierson-wickmann et al., 2009; Semhi and Suchet, 2000; Song et al., 2017a, 2011; West and McBride, 2005); (ii) sulfuri acid forming in the oxidation of reduced sulfuric minerals (mainly pyrite, FeS\textsubscript{2}) (Lerman and Wu, 2006; Lerman et al., 2007; Li et al., 2011, 2008); (iii) organic acid secreted by microorganisms (Lian et al., 2008); and (iv) acidic soil (such as red soil and yellow soil) (Song et al., 2014, 2017b). Given that atmospheric CO\textsubscript{2} is not a unique weathering agent, differentiating between the agents of carbonate weathering is important for the accurate budgeting of net CO\textsubscript{2} consumption by carbonate weathering, especially in agricultural areas where mineral fertilizers are used.

The global average annual increase in mineral fertilizer consumption was 3.3\% from 1961 to 1997, and the FAO’s
study predicts a 1% increase per year until 2030 (FAO, 2000). In China, the consumption of chemical fertilizer increased from 12.7 Mt in 1980 to 59.1 Mt in 2013 (Fig. 1). The increasing consumption of mineral fertilizers is a significant disturbance factor in carbonate weathering and the carbon cycle. Several studies have shown that nitrogen fertilizer additions increased weathering rates and also increased the total export of DIC (dissolved inorganic carbon) from agricultural watersheds (Barnes and Raymond, 2009; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Pierson-wickmann et al., 2009; Probst, 1986; Semhi and Suchet, 2000; West and McBride, 2005). According to an estimate by Semhi et al. (2000), the contribution of N fertilizers to carbonate dissolution was 30 and 12–26% in two small agricultural carbonate basins in south-western France: the Girou and the Gers, respectively (tributaries of the Garonne River). In the Garonne River basin, which is a large basin (52 000 km²), this contribution was estimated to be 6% by Semhi et al. (2000). Perrin et al. (2008) estimated that the contribution of N fertilizer (usually in the form of NH₄NO₃) represents up to 5.7–13.4 and 1.6–3.8% of the carbonate dissolution in France and across the world, respectively.

The estimates described above are largely based on calculations that assumed that a single type of fertilizer (e.g., (NH₄)₂SO₄, NH₄NO₃ or NH₄Cl) was used throughout the whole basin that was considered. However, in actual agricultural practice, different fertilizers are usually added for different crops. The impact of these fertilizers on carbonate weathering and riverine chemical composition may be different. In the case of nitrogenous fertilizer, 100% of NO₃⁻ produced after the addition of (NH₄)₂SO₄ and NH₄Cl is derived from the nitrification of NH₄⁺, whilst comparatively, it is only 50% after the addition of NH₄NO₃. Differences in NO₃⁻ sources may produce a deviation in the impact of N fertilizer addition on CO₂ consumption by carbonate weathering, since the addition of different N fertilizers (e.g., (NH₄)₂SO₄, NH₄NO₃, NH₄Cl, NaNO₃ or urea) may result in different contributions to carbonate weathering and relative products such as HCO₃⁻, Ca²⁺ and Mg²⁺. For phosphate fertilizer, the coprecipitation of phosphate ions with calcium carbonate may inhibit carbonate weathering (Kitano et al., 1978). We assume that the response of carbonate weathering to the addition of different fertilizers, such as N fertilizer (NH₄ and NO₃), P fertilizer and Ca/Mg fertilizer, may display differences, which are so far poorly known but likely significant. Here we sought to understand the agricultural impact on natural carbonate weathering and to accurately evaluate the CO₂ consumption via carbonate weathering in agricultural areas.

The carbonate rock-tablet test is used to determine the weathering rate of carbonate rock/mineral from the laboratory to the field (Adams and Post, 1999; Dreybrodt et al., 1996; Gams, 1981, 1985; Jiang and Yuan, 1999; Liu and Dreybrod, 1997; Plan, 2005; Song et al., 2017a, b, 2011; Trudgill, 1975). In the laboratory, the carbonate rock tablet is employed to study the kinetics of calcite dissolution/precipitation (Dreybrodt et al., 1996; Liu and Dreybrod, 1997) and determine the rate of carbonate mineral weathering in the soil column (Song et al., 2017a, 2011). In the field, it is also used to observe the rate of carbonate weathering and estimate CO₂ consumption (Jiang, 2013; Jiang and Yuan, 1999; Plan, 2005; Song et al., 2017a, b, 2011). Liu (2011) argued that the carbonate rock-tablet test may lead to deviations in estimated CO₂ consumption by carbonate weathering on the regional/global scale, in cases where there are insufficient representative data. It is nonetheless a well-established method for a comparative or simulated experiment (Song et al., 2017a, b, 2011).

A field column experiment that involved embedding carbonate rock tablets was carried out in a typical karst area of southwest China, in order to observe the impact of different fertilizer additions on carbonate weathering in soil.

2 Materials and methods

2.1 The study site

This study was carried out in a typical karst area, namely the Huaxi District of Guiyang City, Guizhou Province, SW China (26°23′N, 106°40′E; 1094 m a.s.l.). Guiyang, the capital city of Guizhou Province, is located in the central part of the province, covering an area from 26°11′00″ to 26°54′20″N and 106°27′20″ to 107°03′00″E (approximately 8000 km²), with elevations ranging from 875 to 1655 m a.s.l. Guiyang has a population of more than 1.5 million people, a wide diversity of karstic landforms, high elevations and low latitude, with a subtropical warm–moist climate, an average annual temperature of 15.3°C and an annual precipitation of 1200 mm (Lang, 2006). A monsoonal
climate often results in high precipitation during summer, with much less during winter, although the humidity is often high throughout most of the year (Han and Jin, 1996). Agriculture is a major land use in order to produce the vegetables and foods in the suburbs of Guiyang (Liu et al., 2006). The consumption of chemical fertilizer increased from 150 kg ha\(^{-1}\) in 1980 to 190 kg ha\(^{-1}\) in 2013 (GBS, 2014).

2.2 Soil properties

The soil used in this column experiment was yellow–brown clay, which was sampled from the B horizon (below 20 cm in depth) of a yellow–brown soil profile from a cabbag–corn or capsicum–corn rotation plantation in Huaxi District. The soil was air-dried, ground to pass through a 2 mm sieve, mixed thoroughly and used for the soil columns. The soil pH (\(V_{\text{soil}} : V_{\text{water}} = 1 : 2.5\)) was determined by pH meter. The chemical characteristics of the soil, including organic matter (OM), \(\text{NH}_4^+–\text{N}, \text{NO}_3^–\text{N}\), available K, available Ca, available Mg, available Fe and available S were determined according to the Agro Services International (ASI) method (Hunter, 1984). OM was extracted by using an extracting solution containing 0.2 mol L\(^{-1}\) NaOH, 0.01 mol L\(^{-1}\) EDTA (ethylene diamine tetraacetic acid), 2 % methanol and 0.005 % Superfloc 127 and determined by the K\(_2\)CrO\(_7\)-H\(_2\)SO\(_4\) oxidation method. \(\text{NH}_4^+–\text{N}\), \(\text{NO}_3^–\text{N}\), available Ca and Mg were extracted by 1 mol L\(^{-1}\) KCl solution. \(\text{NH}_4^+–\text{N}\) and \(\text{NO}_3^–\text{N}\) was determined by the colorimetry method, while Ca and Mg were determined by ICP-AES (inductively coupled plasma atomic emission spectrometer). Available K, P and Fe were extracted by using an extracting solution containing 0.25 mol L\(^{-1}\) NaHCO\(_3\), 0.01 mol L\(^{-1}\) EDTA, 0.01 mol L\(^{-1}\) NH\(_4\)F and 0.005 % Superfloc 127. P was determined by spectrophotometry (colorimetry), and K and Fe were determined by atomic absorption spectrophotometry. Finally, available S was extracted by 0.1 mol L\(^{-1}\) Ca(H\(_2\)PO\(_4\))\(_2\) and 0.005 % Superfloc 127 and determined by the turbidimetric method. The results are shown in Table 1.

2.3 Soil column and different fertilization treatments

In order to test the hypothesis that the impact of different chemical fertilizers on carbonate weathering may be different, columns (\(\Omega = 20 \text{ cm}; H = 15 \text{ cm}\)) were constructed from a 20 cm diameter polyvinyl chloride (PVC) pipe (Fig. 2). A hole (\(\Omega = 2 \text{ cm}\)) was placed at the bottom of each column to discharge soil water from the soil column. A polyethylene net (\(\Omega 0.5 \text{ mm}\)) was placed in the bottom of the columns to prevent soil loss. A 2 cm thick filter layer, including gravel, coarse sand and fine sand, was spread over the net. Two different carbonate rock tablets were buried at the bottom of each soil column (Fig. 2). Based on the common kinds of chemical fertilizers and the main objective of this study, three types (N, P and K fertilizers) of fertilizer including 10 different fertilizers (\(\text{NH}_4\text{NO}_3\); \(\text{NH}_4\text{HCO}_3\); \(\text{NaNO}_3\); \(\text{NH}_4\text{Cl}\); \(\text{NH}_4\text{CO}_3\); \(\text{Ca}_3(\text{PO}_4)_2\); (\(\text{NH}_4\text{)}_2\text{PO}_4\); fused calcium–magnesium phosphate; urea; and \(\text{K}_2\text{CO}_3\) fertilizer) were involved in this study. As a result, 11 fertilization treatments including the control treatment, each with three replicates, were set up in the field column experiment. The local practical rate of fertilizer application is approximately 160 kg N ha\(^{-1}\) of N fertilizer, 150 kg \(\text{P}_2\text{O}_5\) ha\(^{-1}\) of P fertilizer and 50 kg K ha\(^{-1}\) of K fertilizer. In order to shorten the time of this experiment and make the experimental results distinct, the added amount of 10 fertilizers was increased to (1) control without fertilizer (CK); (2) 43 g \(\text{NH}_4\text{NO}_3\) fertilizer (CF); (3) 85 g \(\text{NH}_4\text{HCO}_3\) fertilizer (NHC); (4) 91 g \(\text{NaNO}_3\) fertilizer (NN); (5) 57 g \(\text{NH}_4\text{Cl}\) fertilizer (NCL); (6) 51 g (\(\text{NH}_4\text{)}_2\text{CO}_3\) fertilizer (NC); (7) 52 g \(\text{Ca}_3(\text{PO}_4)_2\) fertilizer (CP); (8) 15 g (\(\text{NH}_4\text{)}_2\text{PO}_4\) fertilizer (NP); (9) 44 g fused calcium–magnesium phosphate fertilizer (Ca–Mg–P); (10) 32 g urea fertilizer (U); and (11) 10 g \(\text{K}_2\text{CO}_3\) fertilizer (PP). An aliquot of 6 kg of soil was weighed (bulk density = 1.3 g cm\(^{-3}\)), mixed thoroughly with one of the above fertilizers and filled into its own column. This process was repeated for all three replicates of the 11 fertilizer treatments. The soil columns were labeled and put in place in an orderly fashion (see Fig. 2b) at the field experiment site in Huaxi District, Guiyang for a whole year.

2.4 The rate of carbonate weathering

Two different kinds of carbonate rock tablets (2 cm × 1 cm × 0.5 cm in size) were placed in the bottom of each soil column to examine the rate of carbonate weathering in the soil. The two different kinds of carbonate rock collected from the karst area of Huaxi District were (1) limestone with 60–65 % micrite, 30–35 % microcrystalline calcite and 2–3 % pyrite; and (2) dolostone with 98–99 % fine crystalline dolomite, 1 % pyrite, and trace quantities organic matter. All the tablets were heated at 80 °C for 4 h, weighed on a 1/10000 elec-

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>–</td>
<td>6.94</td>
</tr>
<tr>
<td>Content of particles &lt; 0.01 mm</td>
<td>%</td>
<td>74</td>
</tr>
<tr>
<td>Content of particles &lt; 0.001 mm</td>
<td>%</td>
<td>45</td>
</tr>
<tr>
<td>Organic matter</td>
<td>%</td>
<td>0.99</td>
</tr>
<tr>
<td>(\text{NH}_4^+–\text{N})</td>
<td>mg kg(^{-1})</td>
<td>339.87</td>
</tr>
<tr>
<td>(\text{NO}_3^–\text{N})</td>
<td>mg kg(^{-1})</td>
<td>569.05</td>
</tr>
<tr>
<td>Available P</td>
<td>mg kg(^{-1})</td>
<td>8.18</td>
</tr>
<tr>
<td>Available K</td>
<td>mg kg(^{-1})</td>
<td>56.88</td>
</tr>
<tr>
<td>Available Ca</td>
<td>mg kg(^{-1})</td>
<td>3041.06</td>
</tr>
<tr>
<td>Available Mg</td>
<td>mg kg(^{-1})</td>
<td>564.83</td>
</tr>
<tr>
<td>Available S</td>
<td>mg kg(^{-1})</td>
<td>100.72</td>
</tr>
<tr>
<td>Available Fe</td>
<td>mg kg(^{-1})</td>
<td>24.41</td>
</tr>
</tbody>
</table>
Figure 2. Sketch of the soil column (a) and their on-site layout (b). (a) The filter layer (2 cm thick) consists of gravel, coarse sand and fine sand; (b) 11 fertilization treatments with 3 replicates including the following: 1 – control; 2 – NH$_4$NO$_3$; 3 – NH$_4$HCO$_3$; 4 – NaNO$_3$; 5 – NH$_4$Cl; 6 – (NH$_4$)$_2$CO$_3$; 7 – Ca$_3$(PO$_4$)$_2$; 8 – (NH$_4$)$_3$PO$_4$; 9 – Ca–Mg–P; 10 – urea; 11 – K$_2$CO$_3$.

Electronic balance in the laboratory, labeled by tying a label with fishing line and then buried at the bottom of each soil column. After a whole year, the tablets were removed carefully, rinsed, baked and weighed.

The amount of weathering ($A_w$), the ratio of weathering ($R_w$) and the rate of weathering ($R_{aw}$) for limestone and dolomite were calculated according to the weight difference of the tablets using the following formulas:

$$A_w = (W_i - W_f),$$
$$R_w = (W_i - W_f)/W_i,$$
$$R_{aw} = (W_i - W_f)/(S \times T),$$

where $W_i$ is the initial weight of the carbonate rock tablet, $W_f$ is the final weight, $S$ is the surface area of the carbonate rock tablet and $T$ is the length of the experimental period.

2.5 Statistical analysis

Statistical analysis was performed using IBM SPSS 20.0 (Statistical Graphics Corp, Princeton, USA). All results of carbonate weathering were reported as the means ± standard deviations (SDs) for the three replicates.

3 Results

3.1 Weathering rate of carbonate under different fertilized treatments

The $R_w$ and $R_{aw}$ of limestone and dolomite are listed in Table 2. The results show that the $R_w$ of limestone under urea, NH$_4$NO$_3$, NH$_4$Cl, (NH$_4$)$_2$CO$_3$ and NH$_4$HCO$_3$ treatments was 8.48 ± 0.96, 6.42 ± 0.28, 5.54 ± 0.64, 4.44 ± 0.81 and 4.48 ± 0.95% respectively, significantly greater than that under the control treatment (0.48 ± 0.14%); see Fig. 3). In addition, the observed $R_w$ of dolomite was 6.59 ± 0.67, 5.30 ± 0.87, 4.77 ± 0.78, 4.94 ± 1.91 and 3.22 ± 0.87% respectively, under these same five fertilization treatments, in contrast to −0.31 ± 0.09% in the control treatment. This clearly demonstrates that the addition of these five fertilizers increased the rate of carbonate weathering.
The remaining treatments made differences in the $R_w$ and $R_{aw}$ of limestone and dolostone in comparison to the control treatment (Table 2), but the differences were much smaller than the treatments with those five fertilizers as mentioned above (Fig. 3). In the (NH$_4$)$_3$PO$_4$ treatment, the $R_w$ were only $1.08 \pm 0.34\%$ and $0.75 \pm 0.21\%$ for limestone and dolomite, respectively, while the $R_{aw}$ were $4.00 \pm 1.15$ and $1.00 \pm 1.01$ g m$^{-2}$ a$^{-1}$ for limestone and dolomite, respectively. The $R_w$ and $R_{aw}$ in the NaNO$_3$ treatments showed differences with the control treatment. The values, however, are much less than those under the five NH$_4$-based fertilizers mentioned above, exhibiting little effect of the NaNO$_3$ fertilizer addition on carbonate weathering (see Table 2 and Fig. 3). Except for the $R_w$ of limestone approaching 0 in the Ca$_3$(PO$_4$)$_2$ treatment, all the values of $R_w$ and $R_{aw}$ in Ca–Mg–P, K$_2$CO$_3$ and Ca$_3$(PO$_4$)$_2$ treatments showed negative values. This indicates that the addition of Ca–Mg–P, K$_2$CO$_3$ and Ca$_3$(PO$_4$)$_2$ fertilizers led to precipitation at the surface of the carbonate mineral.

### Table 2. Carbonate weathering under different fertilizer treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Limestone $R_w/%$e</th>
<th>Limestone $R_{aw}/$g m$^{-2}$a$^{-1}$</th>
<th>Dolostone $R_w/%$e</th>
<th>Dolostone $R_{aw}/$g m$^{-2}$a$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.48 ± 0.14</td>
<td>2.00 ± 0.58</td>
<td>-0.31 ± 0.09</td>
<td>-1.57 ± 0.86</td>
</tr>
<tr>
<td>NH$_4$NO$_3$</td>
<td>6.42 ± 0.28</td>
<td>24.86 ± 2.01</td>
<td>5.30 ± 0.87</td>
<td>20.57 ± 1.15</td>
</tr>
<tr>
<td>NH$_4$HCO$_3$</td>
<td>4.44 ± 0.81</td>
<td>21.00 ± 3.45</td>
<td>3.22 ± 0.87</td>
<td>13.71 ± 3.88</td>
</tr>
<tr>
<td>NaNO$_3$</td>
<td>0.86 ± 0.17</td>
<td>4.43 ± 1.73</td>
<td>0.53 ± 0.26</td>
<td>3.14 ± 1.73</td>
</tr>
<tr>
<td>NH$_4$Cl</td>
<td>5.54 ± 0.64</td>
<td>21.29 ± 2.45</td>
<td>4.77 ± 0.78</td>
<td>18.71 ± 0.86</td>
</tr>
<tr>
<td>(NH$_4$)$_2$CO$_3$</td>
<td>4.48 ± 0.95</td>
<td>20.57 ± 4.46</td>
<td>4.94 ± 1.91</td>
<td>26.57 ± 7.62</td>
</tr>
<tr>
<td>Ca$_3$(PO$_4$)$_2$</td>
<td>0.01 ± 0.04</td>
<td>0.43 ± 0.86</td>
<td>-0.55 ± 0.25</td>
<td>-1.86 ± 1.29</td>
</tr>
<tr>
<td>(NH$_4$)$_3$PO$_4$</td>
<td>1.08 ± 0.34</td>
<td>4.00 ± 1.15</td>
<td>0.75 ± 0.21</td>
<td>1.00 ± 1.01</td>
</tr>
<tr>
<td>Ca–Mg–P</td>
<td>-0.31 ± 0.12</td>
<td>-1.86 ± 0.43</td>
<td>-0.97 ± 0.38</td>
<td>-3.14 ± 0.72</td>
</tr>
<tr>
<td>Urea</td>
<td>8.48 ± 0.96</td>
<td>34.71 ± 4.32</td>
<td>6.59 ± 0.67</td>
<td>26.43 ± 2.73</td>
</tr>
<tr>
<td>K$_2$CO$_3$</td>
<td>-0.26 ± 0.15</td>
<td>-1.14 ± 0.58</td>
<td>-0.59 ± 0.15</td>
<td>-2.57 ± 0.43</td>
</tr>
</tbody>
</table>

$R_w$ = the ratio of carbonate weathering; $R_{aw}$ = the rate of carbonate weathering; $R_w = 1000(W_f - W_i)/W_i$ and $R_{aw} = (W_f - W_i)/S \times T$, where $W_i$ is the initial weight of the carbonate rock tablet and $W_f$ is the final weight. $S$ is the surface area of the carbonate rock tablet (here, we used $S = 7$ cm$^2$ for every tablet), and $T$ is the experiment period. Values are reported as means ± SD; $n = 3$.

![Figure 4. The linear correlation of $R_w$ (‰) of limestone and dolostone. $R_w = 1000(W_f - W_i)/W_i$, where $W_f$ is the initial weight of the limestone tablet and $W_i$ is the final weight.](image_url)

### 3.2 Comparison of limestone of dolomite

Figure 3 shows that, on the whole, the ratios of dolostone weathering are smaller than those of limestone weathering except for the (NH$_4$)$_2$CO$_3$ treatment, demonstrating that dolostone weathers more slowly than limestone under fertilization effects.

In Fig. 4, we plotted the $R_w$ of limestone vs. dolostone tablets in a linear correlation diagram, in order to compare the weathering responses of limestone with dolostone. The results show that the $R_w$ of limestone and dolostone exhibit a high positive correlation ($R^2 = 0.9773$; see Fig. 4), indicating that the weathering of limestone and dolostone are similar under different treatments. Thus, we will explain the results in terms of carbonates, rather than separately discussing the individual dolostone and limestone.

### 4 Discussion

#### 4.1 Kinetics of carbonate dissolution/precipitation: controlling factors

Experimental studies of carbonate dissolution kinetics have shown that metal carbonate weathering usually depends upon three parallel reactions occurring at the carbonate interface (Chou et al., 1989; Plummer et al., 1978; Pokrovsky et al.,...
where Me = Ca, Mg. As Eq. (5) describes, atmospheric/soil CO₂ is usually considered to be the natural weathering agent of carbonate. In watersheds with calcite- and dolomite-containing bedrock, H₂CO₃ formed in the soil zone usually reacts with carbonate minerals, resulting in dissolved Ca, Mg and HCO₃⁻ as described in Eq. (5) (Andrews and Schlesinger, 2001; Shin et al., 2014). Although it has been proven that the reaction of carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), in this study, we consider that the effect of rainfall is equal in each soil column, and hence it is disregarded as a controlling factor in weathering rate differences among these treatments. In theory, the fertilizers could stimulate bacteria, which may increase respiration and CO₂ emissions among these treatments. In theory, the fertilizers could stimulate bacteria, which may increase respiration and CO₂ emissions among these treatments. In this study, the urea, NH₄Cl, NaNO₃, and urea treatments will be as follows, respectively:

\[
\text{NH}_4^+ + 2\text{O}_2 \rightarrow \text{NO}_3^- + \text{H}_2\text{O} + 2\text{H}^+ \quad (8)
\]

The protons (H⁺) produced by nitrification can be neutralized in two ways: (i) either by the exchange process with base cations in the soil exchange complex (Eq. 9).

\[
\text{Soil} - \text{Ca} + 2\text{H}^+ \rightarrow \text{Soil} - 2\text{H}^+ + \text{Ca}^{2+}, \quad (9)
\]

or (ii) via carbonate mineral dissolution (Eq. 10):

\[
\text{Ca}_4(\text{OH})_2\text{CO}_3 + \text{H}^+ \rightarrow (1-x)\text{Ca}^{2+} + x\text{Mg}^{2+} + \text{HCO}_3^- \quad (10)
\]

Consequently, by combining Eqs. (8) and (10), carbonate weathering by protons produced by nitrification can be expressed as (Eq. 11) (see details in Perrin et al., 2008 and Gandois et al., 2011).

\[
2\text{Ca}_4(\text{OH})_2\text{CO}_3 + \text{NH}_4^+ + 2\text{O}_2 \rightarrow 2(1-x)\text{Ca}^{2+} + 2\text{H}_2\text{O} + 2\text{NO}_3^- + 2\text{HCO}_3^- \quad (11)
\]

As discussed above, provided that the loss as ammonia (NH₃) and nitrous oxide (N₂O) after hydrolysis is disregarded in this study, the final equation of carbonate weathering in the NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea treatments will be as follows, respectively:

\[
\begin{align*}
2\text{Ca}_4(\text{OH})_2\text{CO}_3 + \text{NH}_4\text{NO}_3 + 2\text{O}_2 & \rightarrow 2(1-x)\text{Ca}^{2+} + 2\text{H}_2\text{O} + 2\text{NO}_3^- + 2\text{HCO}_3^- \quad (12) \\
2\text{Ca}_4(\text{OH})_2\text{CO}_3 + \text{NH}_4\text{HCO}_3 + 2\text{O}_2 & \rightarrow 2(1-x)\text{Ca}^{2+} + 2\text{H}_2\text{O} + 3\text{HCO}_3^- \quad (13) \\
2\text{Ca}_4(\text{OH})_2\text{CO}_3 + \text{NH}_4\text{Cl} + 2\text{O}_2 & \rightarrow 2(1-x)\text{Ca}^{2+} + 2\text{H}_2\text{O} + 2\text{HCO}_3^- \quad (14) \\
3\text{Ca}_4(\text{OH})_2\text{CO}_3 + \text{NH}_4\text{NO}_3 + 4\text{O}_2 & \rightarrow (1-x)\text{Ca}^{2+} + 2\text{H}_2\text{O} + 4\text{HCO}_3^- \quad (15) \\
3\text{Ca}_4(\text{OH})_2\text{CO}_3 + \text{NaNO}_3 + 4\text{O}_2 & \rightarrow 3(1-x)\text{Ca}^{2+} + 3\text{H}_2\text{O} + 4\text{HCO}_3^- \quad (16)
\end{align*}
\]

4.2 Main reactions and effects in different treatments

The main reactions and effects of every treatment in this study are listed in Table 3.

4.2.1 Nitrification in NH₄ fertilizer: NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea

In urea (CO(NH₂)₂) treatment, the enzyme urease rapidly hydrolyzes the urea N to NH₄⁺ ions (Eq. 7) when urea is applied to the soil (Soares et al., 2012).

\[
\text{CO(NH}_2\text{)}_2 + 3\text{H}_2\text{O} \rightarrow 2\text{NH}_4^+ + 2\text{OH}^- + \text{CO}_2 \quad (7)
\]

Although the study of Singh et al. (2013) showed that part of NH₄⁺ may be lost as ammonia (NH₃) and subsequently as nitrous oxide (N₂O) (Singh et al., 2013), the remaining ammonium (NH₄⁺) is mainly oxidized during nitrification in soil by autotrophic bacteria, such as Nitrosomonas, resulting in nitrite NO₂⁻ and H⁺ ions. Nitrite is in turn oxidized by another bacterium, such as Nitrobacter, resulting in nitrate (NO₃⁻) (Eq. 8) (Perrin et al., 2008).

\[
\text{NH}_4^+ + 2\text{O}_2 \rightarrow \text{NO}_3^- + \text{H}_2\text{O} + 2\text{H}^+ \quad (8)
\]
Table 3. The main reaction and effects in the 11 fertilizer treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Main reactions and effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Control</td>
<td>Ca(_{1-x})Mg(_x)CO(_3) + CO(_2) + H(_2)O → (1 - x)Ca(^{2+}) + xMg(^{2+}) + 2HCO(_3^-)</td>
</tr>
<tr>
<td>2. NH(_4)NO(_3)</td>
<td>2Ca(_{1-x})Mg(_x)CO(_3) + NH(_4)NO(_3) + 2O(_2) → 2(1 - x)Ca(^{2+}) + 2xMg(^{2+}) + 2NO(_3^-) + H(_2)O + 2HCO(_3^-)</td>
</tr>
<tr>
<td>3. NH(_4)HCO(_3)</td>
<td>NH(_4)HCO(_3) → NH(_3) ↑ + H(_2)O + CO(_2) ↑</td>
</tr>
<tr>
<td>4. NaNO(_3)</td>
<td>Ca(_{1-x})Mg(_x)CO(_3) + NaNO(_3) + CO(_2) + H(_2)O → (1 - x)Ca(^{2+}) + xMg(^{2+}) + Na(^+) + NO(_3^-) + H(_2)O + 3HCO(_3^-)</td>
</tr>
<tr>
<td>5. NH(_4)Cl</td>
<td>2Ca(_{1-x})Mg(_x)CO(_3) + NH(_4)Cl + 2O(_2) → 2(1 - x)Ca(^{2+}) + 2xMg(^{2+}) + NO(_3^-) + Cl(^-) + H(_2)O + 2HCO(_3^-)</td>
</tr>
<tr>
<td>6. (NH(_4))(_2)CO(_3)</td>
<td>(NH(_4))(_2)CO(_3) → 2NH(_3) ↑ + H(_2)O + CO(_2) ↑</td>
</tr>
<tr>
<td>7. Ca(_3)(PO(_4))(_2)</td>
<td>(1 - x)Ca(^{2+}) + xMg(^{2+}) + 2HCO(<em>3^-) → Ca(</em>{1-x})Mg(_x)CO(_3) + CO(_2) + H(_2)O</td>
</tr>
<tr>
<td>8. (NH(_4))(_3)PO(_4)</td>
<td>2Ca(_{1-x})Mg(_x)CO(_3) + NH(_4)(_3)PO(_4) + NH(_4)(_3)PO(_4) + 2O(_2) → 2(1 - x)Ca(^{2+}) + 2xMg(^{2+}) + NO(_3^-) + H(_2)O + 2HCO(_3^-)</td>
</tr>
<tr>
<td>9. Ca–Mg–P</td>
<td>(1 - x)Ca(^{2+}) + xMg(^{2+}) + 2HCO(<em>3^-) → Ca(</em>{1-x})Mg(_x)CO(_3) + CO(_2) + H(_2)O</td>
</tr>
<tr>
<td>10. Urea</td>
<td>2Ca(_{1-x})Mg(_x)CO(_3) + CO(_2)(NH(_2))(_2) + 2O(_2) → 3(1 - x)Ca(^{2+}) + 3xMg(^{2+}) + 2NO(_3^-) + 4HCO(_3^-)</td>
</tr>
<tr>
<td>11. K(_2)CO(_3)</td>
<td>3Ca(_{1-x})Mg(_x)CO(_3) + CO(_2)(NH(_2))(_2) + 2O(_2) → 3(1 - x)Ca(^{2+}) + 3xMg(^{2+}) + 2NO(_3^-) + 4HCO(_3^-)</td>
</tr>
<tr>
<td>12. urea</td>
<td>K(_2)CO(_3) + H(_2)O → 2K(^+) + HCO(_3^-) + OH(^-)</td>
</tr>
</tbody>
</table>

4.2.3 Common ion effect: K\(_2\)CO\(_3\) treatment

In the K\(_2\)CO\(_3\) treatment, CO\(_2^-\) and HCO\(_3^-\) will be produced after the addition of K\(_2\)CO\(_3\) according to Eq. (18), hence resulting in carbonate precipitation as described in Eq. (19), due to the common ion effect.

K\(_2\)CO\(_3\) + H\(_2\)O → 2K\(^+\) + HCO\(_3^-\) + OH\(^-\)  
(18)

(1 - x)Ca\(^{2+}\) + xMg\(^{2+}\) + 2HCO\(_3^-\) → Ca\(_{1-x}\)Mg\(_x\)CO\(_3\) (19) + CO\(_2\) + H\(_2\)O

4.2.4 Complex effects: nitrification vs. the inhibition effect of PO\(_4\) in (NH\(_4\))\(_3\)PO\(_4\) treatments

In the (NH\(_4\))\(_3\)PO\(_4\) treatment, the reaction of carbonate weathering will occur according to Eq. (11) due to the nitrification of NH\(_4^+\) ionized from the (NH\(_4\))\(_3\)PO\(_4\) fertilizer. The PO\(_4^{3-}\) anion will exert an inhibition to calcite dissolution (Kitano et al., 1978), as calcium orthophosphate (Ca–P) precipitation is produced on the surface of calcite after the addition of PO\(_4^{3-}\) in soil (reaction: Ca + PO\(_4\) → Ca–P), resulting in the inhibition of the calcite dissolution (Alkattan et al., 2002; Berner and Morse, 1974; Raistrick, 1949).

4.2.5 Complex effects: common ion effect vs. the inhibition effect of PO\(_4\) in Ca\(_3\)(PO\(_4\))\(_2\) and Ca–Mg–P treatments

In the Ca\(_3\)(PO\(_4\))\(_2\) and Ca–Mg–P treatments, on the one hand, Ca\(_{1-x}\)Mg\(_x\)CO\(_3\) is produced when the concentrations of Ca\(^{2+}\) (and/or Mg\(^{2+}\)) increase according to Eq. (19). On the other hand, the inhibition effect of phosphate will cause calcium phosphate precipitation to be produced on the surface of carbonate minerals after the addition of P in soil (reaction: Ca + PO\(_4\) → Ca–P), resulting in the inhibition of the carbonate precipitation (Alkattan et al., 2002; Burton and Walter, 1990; Giannimaras and Koutsooulos, 1987; House, 1987; Ishikawa and Ichikuni, 1981; Lin and Singer, 2006; Mucci, 1986; Reddy, 1977).

4.3 Difference between NH\(_4^+\) and NO\(_3^-\) in impacts on carbonate weathering and implication of the estimation of CO\(_2\) consumption

In order to further compare the differences between NH\(_4^+\) and NO\(_3^-\) effects on carbonate weathering, the initial molar amounts of fertilizer-derived NH\(_4\) unit-1 in every treatment were calculated and are listed in Table 4. The results show that the amount of NH\(_4^+\) hydrolyzed from added urea is 1.06 mole, while NH\(_4^+\) ionized from added NH\(_4\)NO\(_3\), NH\(_4\)HCO\(_3\), NH\(_4\)Cl, (NH\(_4\))\(_2\)CO\(_3\) and (NH\(_4\))\(_3\)PO\(_4\) is 0.54, 1.08, 1.07, 1.06 and 0.03 mole, respectively (Table 4). The R\(_w\) of limestone tablets and the initial amount of NH\(_4^+\) treatment-1 are plotted in Fig. 5. A distinct relationship between them is observed, in that the R\(_w\) values in NH\(_4\)NO\(_3\), NH\(_4\)HCO\(_3\), NH\(_4\)Cl, (NH\(_4\))\(_2\)CO\(_3\) and urea treatments are larger than in the control treatment, where the initial amount of NH\(_4^+\) yields similar results (Fig. 5). This suggests that carbonate weathering in NH\(_4\)NO\(_3\), NH\(_4\)HCO\(_3\), NH\(_4\)Cl, (NH\(_4\))\(_2\)CO\(_3\) and urea
treatments are mainly attributed to the dissolution reaction described as Eq. (11). This process of carbonate weathering by protons released from nitrification has been demonstrated by many studies, from the laboratory to the field (Barnes and Raymond, 2009; Bertrand et al., 2007; Biasi et al., 2008; Errin et al., 2006; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Semhi and Suchet, 2000; Song et al., 2017a, 2011; West and McBride, 2005). We have noted that the $R_w$ values in NH$_4$HCO$_3$ and (NH$_4$)$_2$CO$_3$ treatments are less than half those in the urea treatment despite adding the same amount of fertilizer-derived NH$_4$ (approximately 1.07 mole). This is probably because the two fertilizers, NH$_4$HCO$_3$ and (NH$_4$)$_2$CO$_3$ as a typical weak acid and weak base salt, are easier to decompose and produce NH$_3$ and CO$_2$ gases according to Eqs. (20) and (21) (Trypuc and Kielkowska, 1996), resulting in amounts of fertilizer-derived NH$_4$ that are lower than 1.07 moles.

\[
\text{NH}_4\text{HCO}_3 \rightarrow \text{NH}_3 \uparrow + \text{H}_2\text{O} + \text{CO}_2 \uparrow \quad (20)
\]

\[
(\text{NH}_4)_2\text{CO}_3 \rightarrow 2\text{NH}_3 \uparrow + \text{H}_2\text{O} + \text{CO}_2 \uparrow \quad (21)
\]

The $A_w$ and $R_w$ in the (NH$_4$)$_3$PO$_4$ treatment, unlike in other NH$_4$ fertilizer treatments, do not show a significant increase compared to the control treatment, which is not only owing to the low amount of added NH$_3^+$ in the (NH$_4$)$_3$PO$_4$ treatment (0.3 mole; see Table 4) but also to the inhibition of phosphate (Chien et al., 2011; Wang et al., 2012). After the addition of (NH$_4$)$_3$PO$_4$ in soil, calcium orthophosphate (Ca–P) precipitation will form on calcitic surfaces, which is initiated with the aggregation of clusters leading to the nucleation and subsequent growth of Ca–P phases, at various pH values and ionic strengths relevant to soil solution conditions (Chien et al., 2011; Wang et al., 2012).

There is no significant different between the $R_w$ in the NaNO$_3$ treatment compared to the control treatment, indicating that the addition of NO$_3^-$ fertilizer does not significantly influence carbonate weathering.

A notable issue herein is that the NaNO$_3$ treatment produces the same amount of NO$_3^-$ (1.07 mole) as other NH$_4$ fertilizer (NH$_4$NO$_3$, NH$_4$HCO$_3$, NH$_4$Cl, (NH$_4$)$_2$CO$_3$ and urea), but it fails to impact carbonate weathering, which raises a new problem. Equation (5), usually considered as an expression for the natural weathering process of carbonate, is an important reaction in understanding the kinetics of carbonate dissolution in carbonate-dominated areas, where the molar ratio of HCO$_3^-$ and Me$^{2+}$ in the river is usually used as an indicator to make estimates of CO$_2$ consumption by carbonate weathering on the regional/global scale (Hagedorn and Cartwright, 2009; Li et al., 2009). In agricultural areas, the relationship between (Ca + Mg)/HCO$_3^-$ and NO$_3^-$ is usually employed to estimate the contribution of N fertilizer to riverine Ca$^{2+}$, Mg$^{2+}$ and alkalinity (Etchanchu and Probst, 1988; Jiang, 2013; Jiang et al., 2009; Perrin et al., 2008; Semhi and Suchet, 2000). In these studies, the nitrification described in Eq. (8) is usually considered as the unique origin of NO$_3^-$.

According to the results of the NaNO$_3$ treatment in this study, the contribution of protons from nitrification to carbonate weathering may be overestimated if anthropogenic NO$_3^-$ is neglected, since the anthropogenic NO$_3^-$ does not release the proton described in Eq. (8). For NH$_4$NO$_3$ fertilizer, Eq. (12) shows that two moles of Ca$^{2+}$ + Mg$^{2+}$, NO$_3^-$ and HCO$_3^-$ will be produced when 1 mole NH$_4$NO$_3$ reacts with 2 moles of carbonate, where only half of the NO$_3^-$ originates from nitrification described as Eq. (8). This will result in an overestimation of the contribution of nitrification to carbonate weathering and thus thereby falsify the estimation of CO$_2$ consumption.

On regional scales, if different fertilizers are simultaneously added to an agricultural area, the estimation of CO$_2$ consumption by carbonate weathering might become more complicated, since the mole ratios of Ca + Mg, HCO$_3^-$ and/or NO$_3^-$ between different fertilization treatments are different (see Table 3). Thus, the related anthropogenic inputs (e.g., Ca + Mg, NH$_4$, NO$_3^-$ and HCO$_3^-$) need to be investigated to more accurately estimate the impact of fertilization on carbonate weathering and its CO$_2$ consumption.

### 4.4 The comparison with other studied results

The $R_w$ and $R_{aw}$ of limestone in the control treatment in this study were 0.48% and 2.00 g m$^{-2}$ a$^{-1}$, respectively. These are generally consistent with observations of 0.51–32.97 g m$^{-2}$ a$^{-1}$ (for $R_{aw}$) in Nongla, Guangxi, a karst area of Southwestern China (Zhang, 2011), and with the results of 0.05–5.06% (for $R_w$) and 1.08–136.90 g m$^{-2}$ a$^{-1}$ (for $R_{aw}$).
Table 4. The amount of fertilizer-derived NH$_4^+$ in the initial phase of the experiment and the potential nitorgenous transformation (NH$_4^+$–NO$_3^-$).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Molecular mass (g mol$^{-1}$)</th>
<th>Amount of added fertilizer (g)</th>
<th>Molar amount of added fertilizer (mole)</th>
<th>Amount of fertilizer-derived NH$_4^+$ (mole)</th>
<th>The maximum of N products (mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_4$NO$_3$</td>
<td>80</td>
<td>43</td>
<td>0.54</td>
<td>0.54</td>
<td>1.08</td>
</tr>
<tr>
<td>NH$_4$HCO$_3$</td>
<td>79</td>
<td>85</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>NaNO$_3$</td>
<td>85</td>
<td>91</td>
<td>1.07</td>
<td>0.00</td>
<td>1.07</td>
</tr>
<tr>
<td>NH$_3$Cl</td>
<td>53.5</td>
<td>57</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>(NH$_4$)$_2$CO$_3$</td>
<td>96</td>
<td>51</td>
<td>0.53</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>Ca$_3$(PO$_4$)$_2$</td>
<td>310</td>
<td>52</td>
<td>0.17</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(NH$_4$)$_2$PO$_4$</td>
<td>149</td>
<td>15</td>
<td>0.10</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Ca–Mg–P</td>
<td>nd</td>
<td>44</td>
<td>nd</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Urea</td>
<td>60</td>
<td>32</td>
<td>0.53</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>K$_2$CO$_3$</td>
<td>138</td>
<td>10</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

“nd”: no data. The amount of added fertilizer (g) divided by its molecular mass (g mol$^{-1}$) is the molar amount of fertilizer (mole). The amounts of fertilizer-derived NH$_4^+$ are calculated by their own ionization or hydrolysis processes. The maximum of N products is estimated by their main reactions in Table 3.

from the north slope of the Hochschwab Massif in Austria (Plan, 2005), as determined using the limestone tablet method. But the $R_{aw}$ of 2.00 g m$^{-2}$ a$^{-1}$ is lower than the results of 7.0–63.5 g m$^{-2}$ a$^{-1}$ for $R_{aw}$ from Jinfo Mountain in Chongqing, China (Zhang, 2011). These differences in carbonate weathering are mainly attributed to the different types of carbonate rock tablets, climate, microenvironments of soil, etc. The $R_{aw}$ of limestone in the N fertilizer treatments is 20.57–34.71 g m$^{-2}$ a$^{-1}$, similar to the weathering rate of carbonate in an orchard (32.97 g m$^{-2}$ a$^{-1}$) at Nongla, Manshan, Guangxi, China, which usually involves fertilization activities.

On larger scales, such as watersheds, the weathering rate is usually estimated by using the riverine hydro-chemical method, which is inconsistent with the results from the carbonate rock-tablet test. Zeng et al. (2014) estimate that the carbon sink intensity calculated by the carbonate rock-tablet test is only one sixth of that estimated using the riverine hydro-chemical method (Zeng et al., 2014). The results from Semhi et al. (2000) show that the weathering rates of carbonate rock using the riverine hydro-chemical method are approximately 77.5 and 50.4 g m$^{-2}$ a$^{-1}$ in the upstream and downstream parts, respectively, of the Garonne River, France, which is approximately 25–35 times greater than that in the control treatment (2.00 g m$^{-2}$ a$^{-1}$ for natural weathering rate) and 2–3 times greater than in the N fertilizer treatment (20.57–34.71 g m$^{-2}$ a$^{-1}$ for anthropogenic weathering rate) in this study. The global natural weathering rate of carbonate reported by Amiotte Suchet et al. (2003) is 47.8 g m$^{-2}$ a$^{-1}$, which is much higher than what we observed. Thus, we conclude that it is difficult to compare the results from the carbonate rock-tablet test and the riverine hydro-chemical method. The carbonate rock-tablet test is suitable for research on the comparative or simulated experiments, while the riverine hydro-chemical method is appropriate for regional investigations and estimations. According to the estimation from Yue et al. (2015), the enhanced HCO$_3^-$ flux due to the nitrification of NH$_4^+$ in the Houzhai catchment of Guizhou Province would be 3.72 × 10^-5 kg C year$^{-1}$ and account for 18.7 % of this flux in the entire catchment (Yue et al., 2015). This is similar to estimates from other small agricultural carbonate basins (12–26 %) in southwest France.

5 Conclusions

The impact of the addition of different fertilizers (NH$_4$NO$_3$, NH$_4$HCO$_3$, NaNO$_3$, NH$_3$Cl, (NH$_4$)$_2$CO$_3$, Ca$_3$(PO$_4$)$_2$, (NH$_4$)$_2$PO$_4$, Ca–Mg–P, urea and K$_2$CO$_3$) on carbonate weathering was studied in a field column experiment using carbonate rock tablets. The amount of weathering and the ratio of the weathering of carbonate rock tablets showed that the addition of urea, NH$_4$NO$_3$, NH$_4$HCO$_3$, NH$_3$Cl and (NH$_4$)$_2$CO$_3$ distinctly increased carbonate weathering, which was attributed to the nitrification of NH$_4^+$, while the addition of Ca$_3$(PO$_4$)$_2$, Ca–Mg–P and K$_2$CO$_3$ induced carbonate precipitation due to the common ion effect. The addition of (NH$_4$)$_2$PO$_4$ and NaNO$_3$ had a relatively small impact on carbonate weathering, where the former can be attributed to the low added amount of (NH$_4$)$_2$PO$_4$ and may be related to the inhibition of phosphate, while the latter seemed to raise a new question. The problem is that the minor impact of nitrate on carbonate weathering may result in the overestimation of the impact of N fertilizer on CO$_2$ consumption by carbonate weathering on the regional/global scale if the effects of NO$_3$ and NH$_4$ are not distinguished. Thus, the related anthropogenic inputs (e.g., Ca + Mg, NH$_4$, NO$_3^-$ and HCO$_3^-$) need to be investigated to more accurately estimate the impact of fertilization on carbonate weathering and its
consumption of CO$_2$ (Perrin et al., 2008; Semhi and Suchet, 2000).

Data availability. No data sets were used in this article.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This study was supported jointly by the Basic Science Research Fund from the Institute of Hydrogeology and Environmental Geology (grant no. SK201208) and the Chinese National Natural Science Foundation (no. 41403107 and no. 41325010).

Edited by: Robert Hilton
Reviewed by: three anonymous referees

References


Jiang, Y.: The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: evidence from major elements and $\delta^{13}$CDIC in Nandong, Southwest China, J. Contam. Hydrol., 152, 1–11, 2013.
Lang, Y.: Geochemistry of surface and ground water in Guiyang, China: water/rock interaction and pollution in a karst hydrological system, Appl.Geochem., 21, 887–903, 2006.