Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.176 IF 3.176
  • IF 5-year value: 3.108 IF 5-year 3.108
  • CiteScore value: 3.06 CiteScore 3.06
  • SNIP value: 0.978 SNIP 0.978
  • SJR value: 1.421 SJR 1.421
  • IPP value: 2.88 IPP 2.88
  • h5-index value: 13 h5-index 13
  • Scimago H index value: 13 Scimago H index 13
Volume 6, issue 1 | Copyright
Earth Surf. Dynam., 6, 29-48, 2018
https://doi.org/10.5194/esurf-6-29-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 Feb 2018

Research article | 06 Feb 2018

Alluvial cover controlling the width, slope and sinuosity of bedrock channels

Jens Martin Turowski Jens Martin Turowski
  • Helmholtz-Zentrum Potsdam, German Research Centre for Geosciences GFZ, Telegrafenberg, 14473 Potsdam, Germany

Abstract. Bedrock channel slope and width are important parameters for setting bedload transport capacity and for stream-profile inversion to obtain tectonics information. Channel width and slope development are closely related to the problem of bedrock channel sinuosity. It is therefore likely that observations on bedrock channel meandering yields insights into the development of channel width and slope. Active meandering occurs when the bedrock channel walls are eroded, which also drives channel widening. Further, for a given drop in elevation, the more sinuous a channel is, the lower is its channel bed slope in comparison to a straight channel. It can thus be expected that studies of bedrock channel meandering give insights into width and slope adjustment and vice versa. The mechanisms by which bedrock channels actively meander have been debated since the beginning of modern geomorphic research in the 19th century, but a final consensus has not been reached. It has long been argued that whether a bedrock channel meanders actively or not is determined by the availability of sediment relative to transport capacity, a notion that has also been demonstrated in laboratory experiments. Here, this idea is taken up by postulating that the rate of change of both width and sinuosity over time is dependent on bed cover only. Based on the physics of erosion by bedload impacts, a scaling argument is developed to link bedrock channel width, slope and sinuosity to sediment supply, discharge and erodibility. This simple model built on sediment-flux-driven bedrock erosion concepts yields the observed scaling relationships of channel width and slope with discharge and erosion rate. Further, it explains why sinuosity evolves to a steady-state value and predicts the observed relations between sinuosity, erodibility and storm frequency, as has been observed for meandering bedrock rivers on Pacific Arc islands.

Publications Copernicus
Download
Short summary
Bedrock channels are a key component of mountainous landscapes. Here, a new model of the steady-state morphology, including channel width, slope and sinuosity, is derived from process physics considerations. The model compares favourably to observed scaling relations.
Bedrock channels are a key component of mountainous landscapes. Here, a new model of the...
Citation
Share