Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.765 IF 3.765
  • IF 5-year value: 3.719 IF 5-year
    3.719
  • CiteScore value: 3.83 CiteScore
    3.83
  • SNIP value: 1.281 SNIP 1.281
  • IPP value: 3.61 IPP 3.61
  • SJR value: 1.527 SJR 1.527
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 17 Scimago H
    index 17
  • h5-index value: 18 h5-index 18
ESurf | Articles | Volume 6, issue 3
Earth Surf. Dynam., 6, 687–703, 2018
https://doi.org/10.5194/esurf-6-687-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Surf. Dynam., 6, 687–703, 2018
https://doi.org/10.5194/esurf-6-687-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Aug 2018

Research article | 29 Aug 2018

Assessing the large-scale impacts of environmental change using a coupled hydrology and soil erosion model

Joris P. C. Eekhout et al.
Viewed  
Total article views: 1,771 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,388 363 20 1,771 58 14 20
  • HTML: 1,388
  • PDF: 363
  • XML: 20
  • Total: 1,771
  • Supplement: 58
  • BibTeX: 14
  • EndNote: 20
Views and downloads (calculated since 26 Mar 2018)
Cumulative views and downloads (calculated since 26 Mar 2018)
Viewed (geographical distribution)  
Total article views: 1,659 (including HTML, PDF, and XML) Thereof 1,637 with geography defined and 22 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 18 Nov 2019
Publications Copernicus
Download
Short summary
Climate change will likely increase soil erosion in many locations worldwide. This increase in erosion will have large-scale impacts, such as the siltation of reservoirs. We developed a new soil erosion model to evaluate these impacts, which has an advantage over existing models in that it includes most relevant processes: rainfall–runoff generation, vegetation development, and soil erosion and deposition. The model is suited to perform scenario studies on climate change and land management.
Climate change will likely increase soil erosion in many locations worldwide. This increase in...
Citation