Journal metrics

Journal metrics

  • IF value: 3.176 IF 3.176
  • IF 5-year value: 3.108 IF 5-year 3.108
  • CiteScore value: 3.06 CiteScore 3.06
  • SNIP value: 0.978 SNIP 0.978
  • SJR value: 1.421 SJR 1.421
  • IPP value: 2.88 IPP 2.88
  • h5-index value: 13 h5-index 13
  • Scimago H index value: 13 Scimago H index 13
Volume 6, issue 3 | Copyright
Earth Surf. Dynam., 6, 723-741, 2018
https://doi.org/10.5194/esurf-6-723-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 31 Aug 2018

Research article | 31 Aug 2018

Late Holocene channel pattern change from laterally stable to meandering – a palaeohydrological reconstruction

Jasper H. J. Candel1, Maarten G. Kleinhans2, Bart Makaske1, Wim Z. Hoek2, Cindy Quik1, and Jakob Wallinga1 Jasper H. J. Candel et al.
  • 1Soil Geography and Landscape Group, Wageningen University & Research, Wageningen, P.O. Box 47, 6700AA, the Netherlands
  • 2Department of Physical Geography, Utrecht University, Utrecht, P.O. Box 80125, 3508TC, the Netherlands

Abstract. River channel patterns may alter due to changes in hydrological regime related to changes in climate and/or land cover. Such changes are well documented for transitions between meandering and braiding rivers, whereas channel pattern changes between laterally stable and meandering rivers are poorly documented and understood. We hypothesize that many low-energy meandering rivers had relatively low peak discharges and were laterally stable during most of the Holocene, when climate was relatively stable and human impact was limited. Our objectives in this work are to identify a Late Holocene channel pattern change for the low-energy Overijsselse Vecht river, to develop and apply a novel methodology to reconstruct discharge as a function of time following a stochastic approach, and to relate this channel pattern change to reconstructed hydrological changes. We established that the Overijsselse Vecht was laterally virtually stable throughout the Holocene until the Late Middle Ages, after which large meanders formed at lateral migration rates of about 2myr−1. The lateral stability before the Late Middle Ages was constrained using a combination of coring information, ground-penetrating radar (GPR), radiocarbon (14C) dating, and optically stimulated luminescence (OSL) dating. We quantified bankfull palaeodischarge as a function of time based on channel dimensions that were reconstructed from the scroll bar sequence and channel cut-offs using coring information and GPR data, combined with chronological constraints from historical maps and OSL dating. We found that the bankfull discharge was significantly greater during the meandering phase compared to the laterally stable phase. Empirical channel and bar pattern models showed that this increase can explain the channel pattern change. The bankfull discharge increase likely reflects climate changes related to the Little Ice Age and/or land use changes in the catchment, in particular as a result of peat reclamation and exploitation.

Download & links
Publications Copernicus
Download
Short summary
In this study we show how the Overijsselse Vecht river changed from a laterally stable to a meandering river ca. 500 years ago. We developed a methodology to reconstruct the historical discharge and found that the change in river style was caused by an increase in peak discharges. This increase was likely caused by the Little Ice Age and land use changes in the catchment (peat reclamation and exploitation). This study shows how river style changes as a result of discharge regime changes.
In this study we show how the Overijsselse Vecht river changed from a laterally stable to a...
Citation
Share