Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.176 IF 3.176
  • IF 5-year value: 3.108 IF 5-year 3.108
  • CiteScore value: 3.06 CiteScore 3.06
  • SNIP value: 0.978 SNIP 0.978
  • SJR value: 1.421 SJR 1.421
  • IPP value: 2.88 IPP 2.88
  • h5-index value: 13 h5-index 13
  • Scimago H index value: 13 Scimago H index 13
Volume 6, issue 4
Earth Surf. Dynam., 6, 903-922, 2018
https://doi.org/10.5194/esurf-6-903-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Surf. Dynam., 6, 903-922, 2018
https://doi.org/10.5194/esurf-6-903-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 10 Oct 2018

Research article | 10 Oct 2018

Initial insights from a global database of rainfall-induced landslide inventories: the weak influence of slope and strong influence of total storm rainfall

Odin Marc1, André Stumpf1, Jean-Philippe Malet1, Marielle Gosset2, Taro Uchida3, and Shou-Hao Chiang4 Odin Marc et al.
  • 1École et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg, Centre National de la Recherche Scientifique UMR 7516, University of Strasbourg, 67084 Strasbourg CEDEX, France
  • 2Géoscience Environnement Toulouse, Toulouse, France
  • 3National Institute for Land and Infrastructure Management, Research Center for Disaster Risk Management, Tsukuba, Japan
  • 4Center for Space and Remote Sensing Research, National Central University, Taoyuan City 32001, Taiwan

Abstract. Rainfall-induced landslides are a common and significant source of damages and fatalities worldwide. Still, we have little understanding of the quantity and properties of landsliding that can be expected for a given storm and a given landscape, mostly because we have few inventories of rainfall-induced landslides caused by single storms. Here we present six new comprehensive landslide event inventories coincident with well identified rainfall events. Combining these datasets, with two previously published datasets, we study their statistical properties and their relations to topographic slope distribution and storm properties. Landslide metrics (such as total landsliding, peak landslide density, or landslide distribution area) vary across 2 to 3 orders of magnitude but strongly correlate with the storm total rainfall, varying over almost 2 orders of magnitude for these events. Applying a normalization on the landslide run-out distances increases these correlations and also reveals a positive influence of total rainfall on the proportion of large landslides. The nonlinear scaling of landslide density with total rainfall should be further constrained with additional cases and incorporation of landscape properties such as regolith depth, typical strength or permeability estimates. We also observe that rainfall-induced landslides do not occur preferentially on the steepest slopes of the landscape, contrary to observations from earthquake-induced landslides. This may be due to the preferential failures of larger drainage area patches with intermediate slopes or due to the lower pore-water pressure accumulation in fast-draining steep slopes. The database could be used for further comparison with spatially resolved rainfall estimates and with empirical or mechanistic landslide event modeling.

Publications Copernicus
Download
Short summary
Rainfall-induced landslides cause significant damage and fatality worldwide, but we have few datasets constraining the impact of individual storms. We present and analyze 8 landslide inventories, with >150 to >150 00 landslides, comprehensively representing the landslide population caused by 8 storms from Asia and the Americas. We found that the total storm rainfall is a major control on total landsliding, landslide size, and that storms trigger landslides on less steep slopes than earthquakes.
Rainfall-induced landslides cause significant damage and fatality worldwide, but we have few...
Citation
Share