Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.765 IF 3.765
  • IF 5-year value: 3.719 IF 5-year
    3.719
  • CiteScore value: 3.83 CiteScore
    3.83
  • SNIP value: 1.281 SNIP 1.281
  • IPP value: 3.61 IPP 3.61
  • SJR value: 1.527 SJR 1.527
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 17 Scimago H
    index 17
  • h5-index value: 18 h5-index 18
ESurf | Articles | Volume 7, issue 4
Earth Surf. Dynam., 7, 1009–1017, 2019
https://doi.org/10.5194/esurf-7-1009-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Surf. Dynam., 7, 1009–1017, 2019
https://doi.org/10.5194/esurf-7-1009-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Short communication 28 Oct 2019

Short communication | 28 Oct 2019

Short Communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points

Kristen L. Cook and Michael Dietze
Related authors  
Spatiotemporal patterns, triggers and anatomies of seismically detected rockfalls
Michael Dietze, Jens M. Turowski, Kristen L. Cook, and Niels Hovius
Earth Surf. Dynam., 5, 757–779, https://doi.org/10.5194/esurf-5-757-2017,https://doi.org/10.5194/esurf-5-757-2017, 2017
Short summary
Related subject area  
Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing using FlowFill
Kerry L. Callaghan and Andrew D. Wickert
Earth Surf. Dynam., 7, 737–753, https://doi.org/10.5194/esurf-7-737-2019,https://doi.org/10.5194/esurf-7-737-2019, 2019
Short summary
Relationships between regional coastal land cover distributions and elevation reveal data uncertainty in a sea-level rise impacts model
Erika E. Lentz, Nathaniel G. Plant, and E. Robert Thieler
Earth Surf. Dynam., 7, 429–438, https://doi.org/10.5194/esurf-7-429-2019,https://doi.org/10.5194/esurf-7-429-2019, 2019
Short summary
A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles
Boris Gailleton, Simon M. Mudd, Fiona J. Clubb, Daniel Peifer, and Martin D. Hurst
Earth Surf. Dynam., 7, 211–230, https://doi.org/10.5194/esurf-7-211-2019,https://doi.org/10.5194/esurf-7-211-2019, 2019
Short summary
A method based on structure-from-motion photogrammetry to generate sub-millimetre-resolution digital elevation models for investigating rock breakdown features
Ankit Kumar Verma and Mary Carol Bourke
Earth Surf. Dynam., 7, 45–66, https://doi.org/10.5194/esurf-7-45-2019,https://doi.org/10.5194/esurf-7-45-2019, 2019
Short summary
A comparison of structure from motion photogrammetry and the traversing micro-erosion meter for measuring erosion on shore platforms
Niamh Danielle Cullen, Ankit Kumar Verma, and Mary Clare Bourke
Earth Surf. Dynam., 6, 1023–1039, https://doi.org/10.5194/esurf-6-1023-2018,https://doi.org/10.5194/esurf-6-1023-2018, 2018
Short summary
Cited articles  
Anderson, K., Westoby, M. J., and James, M. R.: Low-budget topographic surveying comes of age: Structure from motion photogrammetry in geography and the geosciences, Prog. Phys. Geog., 43, 163–173, 2019. 
Carbonneau, P. E. and Dietrich, J. T.: Cost-effective non-metric photogrammetry from consumer-grade sUAS: implications for direct georeferencing of structure from motion photogrammetry, Earth Surf. Proc. Land., 42, 473–486, https://doi.org/10.1002/esp.4012, 2017. 
Carrivick, J. L., Smith, M. W., and Quincey, D. J.: Structure from Motion in the Geosciences, John Wiley & Sons, Chichester, UK, 2016. 
CloudCompare (version 2.10.1): GPL software, available at: http://www.cloudcompare.org/, last access: 21 January 2019. 
Cook, K. L.: An evaluation of the effectiveness of lowcost UAVs and structure from motion for geomorphic change detection, Geomorph., 278, 195–208, https://doi.org/10.1016/j.geomorph.2016.11.009, 2017. 
Publications Copernicus
Download
Short summary
UAVs have become popular tools for detecting topographic changes. Traditionally, detecting small amounts of change between two UAV surveys requires each survey to be highly accurate. We take an alternative approach and present a simple processing workflow that produces survey pairs or sets that are highly consistent with each other, even when the overall accuracy is relatively low. This greatly increases our ability to detect changes in settings where ground control is not possible.
UAVs have become popular tools for detecting topographic changes. Traditionally, detecting small...
Citation