Typical averaging time for thermo-chronometric methods.

Time required for averaging landslide variability, yr

- $\alpha = 1.25-1.50$; $A_{\text{max}} = 2.86 \text{ km}^2$
- $\alpha = 1.25-1.50$; $A_{\text{max}} = 10.7 \text{ km}^2$
- $\alpha = 1.25-1.50$; $A_{\text{max}} = 40 \text{ km}^2$

10Be typical averaging time in active ranges (i.e., 0.3 to 2 mm/yr of erosion)

Typical averaging time for suspended sediments methods.

Typical intra-montane catchments area (cf. Godard et al., 2012, 2014, Portenga et al., 2015)

Proportion of erosion not sampled by 10Be, %

Sediment source area, km2

Narayanghat

Harding bridge

Typical averaging time for thermo-chronometric methods.

- $\alpha = 1.25-1.50$; $A_{\text{max}} = 2.86 \text{ km}^2$
- $\alpha = 1.25-1.50$; $A_{\text{max}} = 10.7 \text{ km}^2$
- $\alpha = 1.25-1.50$; $A_{\text{max}} = 40 \text{ km}^2$

10Be typical averaging time in active ranges (i.e., 0.3 to 2 mm/yr of erosion)

Typical averaging time for suspended sediments methods.

Typical intra-montane catchments area (cf. Godard et al., 2012, 2014, Portenga et al., 2015)

Proportion of erosion not sampled by 10Be, %

Sediment source area, km2