Abarbanel, S., Ditkowski, A., and Gustafsson, B.: On error bounds of finite
difference approximations to partial differential equations–temporal
behavior and rate of convergence, J. Sci. Comput., 15,
79–116, 2000. a, b

Ayalew, L. and Yamagishi, H.: The application of GIS-based logistic
regression
for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central
Japan, Geomorphology, 65, 15–31, 2005. a

Baguskas, S. A., Peterson, S. H., Bookhagen, B., and Still, C. J.: Evaluating
spatial patterns of drought-induced tree mortality in a coastal California
pine forest, Forest Ecol. Manag., 315, 43–53, 2014. a

Band, L. E.: Topographic partition of watersheds with digital elevation
models, Water Resour. Res., 22, 15–24, 1986. a

Bolstad, P. V. and Stowe, T.: An evaluation of DEM accuracy: elevation,
slope,
and aspect, Photogramm. Eng. Rem. S., 60, 7327–7332,
1994. a

Bookhagen, B. and Strecker, M. R.: Spatiotemporal trends in erosion rates
across a pronounced rainfall gradient: Examples from the southern Central
Andes, Earth Planet. Sc. Lett., 327, 97–110, 2012. a, b

Carlisle, B. H.: Modelling the spatial distribution of DEM error, T. GIS, 9,
521–540, 2005. a

Dibblee, T. W.: Geologic Map of Western Santa Cruz Island, Dibblee Geological
Foundation, Santa Barbara, California, USA, 2001. a

Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M.,
and Roering, J. J.: Geomorphic transport laws for predicting landscape form
and dynamics, Prediction in geomorphology, 135, 103–132, 2003. a

Dunn, M. and Hickey, R.: The effect of slope algorithms on slope estimates
within a GIS, Cartography, 27, 9–15, 1998. a, b

Durran, D. R.: Numerical methods for wave equations in geophysical fluid
dynamics, vol. 32, Springer Science & Business Media, New York, USA, 1999. a

Evans, I. S.: An integrated system of terrain analysis and slope mapping,
Z. Geomorphol., 36, 274–295, 1980. a, b, c, d

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The shuttle radar
topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007. a

Fisher, P. F.: Models of uncertainty in spatial data, Geographical
information systems, 1, 191–205, 1999. a

Fisher, P. F. and Tate, N. J.: Causes and consequences of error in digital
elevation models, Prog. Phys. Geog., 30, 467–489, 2006. a

Florinsky, I. V.: Accuracy of local topographic variables derived from
digital elevation models, Int. J. Geogr. Inf. Sci., 12, 47–62, 1998. a, b, c, d

Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced
grids, Math. Comput., 51, 699–706, 1988. a

Franklin, J.: Predictive vegetation mapping: geographic modelling of
biospatial patterns in relation to environmental gradients, Prog. Phys.
Geog., 19, 474–499, 1995. a

Grieve, S. W. D., Mudd, S. M., Milodowski, D. T., Clubb, F. J., and Furbish,
D. J.: How does grid-resolution modulate the topographic expression of
geomorphic processes?, Earth Surf. Dynam., 4, 627–653,
https://doi.org/10.5194/esurf-4-627-2016, 2016. a

Guisan, A. and Zimmermann, N. E.: Predictive habitat distribution models in
ecology, Ecol. Model., 135, 147–186, 2000. a

Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide
hazard
evaluation: a review of current techniques and their application in a
multi-scale study, Central Italy, Geomorphology, 31, 181–216, 1999. a

Heuvelink, G. B., Burrough, P. A., and Stein, A.: Propagation of errors in
spatial modelling with GIS, Int. J. Geog. Inf. Syst., 3, 303–322, 1989. a, b, c

Holmes, K., Chadwick, O., and Kyriakidis, P. C.: Error in a USGS 30-meter
digital elevation model and its impact on terrain modeling, J.
Hydrol., 233, 154–173, 2000. a

Hunter, G. J. and Goodchild, M. F.: Modeling the uncertainty of slope and
aspect estimates derived from spatial databases, Geogr. Anal., 29,
35–49, 1997. a, b, c

Kent, M.: Vegetation description and data analysis: a practical approach,
John Wiley & Sons, New York, USA, 2011. a

Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional
landscapes, J. Struct. Geol., 44, 54–75, 2012. a

Kraus, K. and Pfeifer, N.: Determination of terrain models in wooded areas
with airborne laser scanner data, ISPRS J. Photogramm., 53, 193–203, 1998. a

Kyriakidis, P. C., Shortridge, A. M., and Goodchild, M. F.: Geostatistics for
conflation and accuracy assessment of digital elevation models, Int.
J. Geog. Inf. Sci., 13, 677–707, 1999. a

Lague, D.: The stream power river incision model: evidence, theory and
beyond,
Earth Surf. Proc. Land., 39, 38–61, 2014. a

LAStools: Efficient LiDAR Processing Software (version 180831, academic),
available at: http://rapidlasso.com/LAStools (last access:
12 January 2019), 2017. a

Lee, J., Fisher, P., Snyder, P., et al.: Modeling the effect of data errors
on feature extraction from digital elevation models, Photogramm. Eng. Rem.
S., 58, 1461–1461, 1992. a

Montgomery, D. R. and Dietrich, W. E.: A physically based model for the
topographic control on shallow landsliding, Water Resour. Res., 30,
1153–1171, 1994. a

Mukul, M., Srivastava, V., Jade, S., and Mukul, M.: Uncertainties in the
Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian
Himalaya and Peninsula, Sci. Rep., 7, 41672, https://doi.org/10.1038/srep41672, 2017. a

Neely, A., Bookhagen, B., and Burbank, D.: An automated knickzone selection
algorithm (KZ-Picker) to analyze transient landscapes: Calibration and
validation, J. Geophys. Res.-Earth, 122, 1236–1261,
2017. a

Oksanen, J. and Sarjakoski, T.: Error propagation of DEM-based surface
derivatives, Comput. Geosci., 31, 1015–1027, 2005. a, b, c

Oksanen, J. and Sarjakoski, T.: Uncovering the statistical and spatial
characteristics of fine toposcale DEM error, Int. J.
Geog. Inf. Sci., 20, 345–369, 2006. a

OpenTopography: 2010 channel islands lidar collection,
https://doi.org/10.5069/G95D8PS7, 2012. a

Ouma, Y. O. and Tateishi, R.: Urban flood vulnerability and risk mapping
using
integrated multi-parametric AHP and GIS: methodological overview and case
study assessment, Water, 6, 1515–1545, 2014. a

Pelletier, J. D.: Quantitative modeling of earth surface processes, Cambridge
University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511813849, 2008. a

Pelletier, J. D.: Minimizing the grid-resolution dependence of flow-routing
algorithms for geomorphic applications, Geomorphology, 122, 91–98, 2010. a

Pelletier, J. D.: A robust, two-parameter method for the extraction of
drainage
networks from high-resolution digital elevation models (DEMs): Evaluation
using synthetic and real-world DEMs, Water Resour. Res., 49, 75–89,
2013. a

Perroy, R. L., Bookhagen, B., Asner, G. P., and Chadwick, O. A.: Comparison
of
gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz
Island, California, Geomorphology, 118, 288–300, 2010. a

Perroy, R. L., Bookhagen, B., Chadwick, O. A., and Howarth, J. T.: Holocene
and
Anthropocene landscape change: arroyo formation on Santa Cruz Island,
California, Ann. Assoc. Am. Geogr., 102,
1229–1250, 2012. a

Pierce, K. B., Lookingbill, T., and Urban, D.: A simple method for estimating
potential relative radiation (PRR) for landscape-scale vegetation analysis,
Landscape Ecol., 20, 137–147, 2005. a

Purinton, B. and Bookhagen, B.: Validation of digital elevation models (DEMs)
and comparison of geomorphic metrics on the southern Central Andean Plateau,
Earth Surf. Dynam., 5, 211–237, https://doi.org/10.5194/esurf-5-211-2017,
2017. a, b

Purinton, B. and Bookhagen, B.: Measuring decadal vertical land-level changes
from SRTM-C (2000) and TanDEM-X (∼2015) in the south-central Andes,
Earth Surf. Dynam., 6, 971–987, https://doi.org/10.5194/esurf-6-971-2018,
2018. a, b

Rodriguez, E., Morris, C. S., and Belz, J. E.: A global assessment of the
SRTM performance, Photogramm. Eng. Rem. S., 72, 249–260, 2006. a

Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for nonlinear,
diffusive sediment transport on hillslopes and implications for landscape
morphology, Water Resour. Res., 35, 853–870, 1999. a

Roering, J. J., Marshall, J., Booth, A. M., Mort, M., and Jin, Q.: Evidence
for
biotic controls on topography and soil production, Earth Planet.
Sc. Lett., 298, 183–190, 2010. a

Schmidt, J., Evans, I. S., and Brinkmann, J.: Comparison of polynomial models
for land surface curvature calculation, Int. J. Geog.
Inf. Sci., 17, 797–814, 2003. a, b

Shortridge, A. and Messina, J.: Spatial structure and landscape associations
of SRTM error, Remote Sens. Environ., 115, 1576–1587, 2011. a

Skidmore, A. K.: A comparison of techniques for calculating gradient and
aspect
from a gridded digital elevation model, Int. J. Geog.
Inf. Syst., 3, 323–334, 1989. a, b

Smith, B. and Sandwell, D.: Accuracy and resolution of shuttle radar
topography mission data, Geophys. Res. Lett., 30, 1467, https://doi.org/10.1029/2002GL016643, 2003. a, b

Smith, T., Rheinwalt, A., and Bookhagen, B.: TopoMetricUncertainty –
Calculating Topographic Metric Uncertainty and Optimal Grid Resolution. V.
1.0, GFZ Data Services, https://doi.org/10.5880/fidgeo.2019.017, 2019. a

Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J.: Landscape
response to tectonic forcing: Digital elevation model analysis of stream
profiles in the Mendocino triple junction region, northern California,
Geol. Soc. Am. Bull., 112, 1250–1263, 2000. a

Tarboton, D. G.: A new method for the determination of flow directions and
upslope areas in grid digital elevation models, Water Resour. Res., 33,
309–319, 1997. a, b, c, d, e

Thompson, J. A., Bell, J. C., and Butler, C. A.: Digital elevation model
resolution: effects on terrain attribute calculation and quantitative
soil-landscape modeling, Geoderma, 100, 67–89, 2001. a

Tucker, G. E. and Bras, R. L.: Hillslope processes, drainage density, and
landscape morphology, Water Resour. Res., 34, 2751–2764, 1998. a

Tucker, G. E. and Hancock, G. R.: Modelling landscape evolution, Earth Surf.
Proc. Land., 35, 28–50, 2010. a

Wechsler, S. P.: Uncertainties associated with digital elevation models for
hydrologic applications: a review, Hydrol. Earth Syst. Sci., 11, 1481–1500,
https://doi.org/10.5194/hess-11-1481-2007, 2007. a, b

Wechsler, S. P. and Kroll, C. N.: Quantifying DEM uncertainty and its effect
on topographic parameters, Photogramm. Eng. Rem. S., 72, 1081–1090, 2006.
a, b

Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., and Roth,
A.: Accuracy assessment of the global TanDEM-X Digital Elevation Model with
GPS data, ISPRS J. Photogramm., 139, 171–182, 2018. a

Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision
model: Implications for height limits of mountain ranges, landscape response
timescales, and research needs, J. Geophys. Res.-Sol. Ea.,
104, 17661–17674, 1999. a

Zevenbergen, L. W. and Thorne, C. R.: Quantitative analysis of land surface
topography, Earth Surf. Proc. Land., 12, 47–56, 1987. a, b, c

Zhang, J. and Goodchild, M. F.: Uncertainty in geographical information, CRC
press, London, UK, https://doi.org/10.1201/b12624, 2002. a

Zhang, W. and Montgomery, D. R.: Digital elevation model grid size, landscape
representation, and hydrologic simulations, Water Resour. Res., 30,
1019–1028, 1994. a

Zhou, Q. and Liu, X.: Error analysis on grid-based slope and aspect
algorithms, Photogramm. Eng. Rem. S., 70, 957–962, 2004. a, b, c, d, e